甲状腺是位于颈部底部、喉结下方的蝴蝶形腺体。甲状腺会产生控制血压、体温、心率和体重的激素。甲状腺细胞开始增殖,最终发展为甲状腺癌。最初,甲状腺癌可能没有任何症状。但是,当它变大时,可能会产生颈部肿胀、声音变化和吞咽困难等症状和指标。当甲状腺细胞发生 DNA 变异时,就会导致甲状腺癌。细胞的 DNA 包含指示其做什么的指令。科学家称之为突变的变异指示细胞增殖和快速扩张。当健康细胞自然死亡时,这些细胞继续存在。肿瘤是由正在积累的细胞形成的肿块。肿瘤有可能发展、浸润周围组织并传播(转移)到颈部淋巴结。有时,癌细胞能够传播到身体的其他部位,包括肺、骨骼和颈部。通过将甲状腺模型放置在天线下方,使用所提出的 MPA 来检测肿瘤 [1]。
分布式能源资源战略 随着分布式能源资源水平的不断提高,确保大容量电力系统的可靠性 2022 年 11 月 目的和背景 分布式能源 1 (DER) 水平正在北美许多地区迅速增长(见图 1),并正在改变大容量电力系统 (BPS) 的规划、设计和运营方式。由于 DER 是 BPS 和大容量电力系统 (BES) 的潜在有影响力的用户,因此 DER 的涌入既为电网可靠性、弹性和灵活性带来了潜在的好处,也带来了挑战。NERC 一直积极与行业利益相关者合作,以确定与不断提高的 DER 水平相关的 BPS 可靠性风险,并制定了此文档以确定确保 BPS 可靠运行所必需的当前和未来战略行动 2。虽然每个单独的 DER 都与配电相连,但 NERC 仍在继续研究和评估这些 BPS 和 BES 用户对可靠性的影响(见图 2)。
摘要 — 可再生能源对于孤岛电力系统供电具有吸引力。当光伏系统 (PV) 的渗透率变大时,电力需求无法消耗所有的光伏输出,但需要削减光伏输出。热泵热水器和电池储能系统的需求响应 (DR) 可以减少削减。水厂系统也适合 DR 资源,因为许多水厂系统都有大型水箱或水坝作为储水设施。为了充分利用水厂系统的巨大灵活性,需要对 DR 资源进行多日协调控制。本文构建了具有多个 DR 资源的孤立电力系统的优化模型,作为制定协调控制方法的第一步。比较了 2 周优化和 1 天优化之间 DR 资源的运行情况,分析了 5 种光伏容量设置的长期规划效果。仿真结果表明,DR 协调控制的适用规则因季节和安装的光伏容量而异。
由于电子结构算法的计算复杂性在经典数字计算机上运行,即使经过数十年的工作,也可以对模拟进行的分子系统范围仍然严格限制。许多人认为,量子计算机将超越这种限制,尽管在当前时代,这些设备的大小和噪声会反对显着的进展。在这里,我们描述了一种化学直觉的方法,该方法允许在量子设备上准确计算分子电子结构的子域,而使用在经典计算机上运行的密度功能理论,则在较低的准确度上描述了其余的分子。我们证明,这种方法会为无法在当前量子计算机上充分模拟的分子产生改进的结果,但可以在较便宜的近似水平上经典地解决。该算法是可调的,因此可以调整量子模拟的大小以在可用的量子资源上运行。因此,随着量子设备变大,该方法将使越来越大的子域准确地研究。
许多此类应用涉及不同电压域之间的通信,因此需要隔离这些 CAN 端口。在工业应用中隔离 CAN 端口的另外两个常见原因是防止节点之间的接地电位差 (GPD) 或提高电磁兼容性 (EMC)。当节点之间的距离变大或在嘈杂环境中将共模噪声耦合到 CAN 总线时,就会产生 GPD。这些 GPD 可能会导致数据损坏,甚至损坏收发器本身。在收发器和 MCU 之间添加电流隔离可以解决这个问题,因为隔离屏障的高阻抗可以保护敏感的 MCU 侧电路,同时允许 CAN 收发器和 MCU 之间进行可靠的通信。此外,系统设计人员可以利用隔离屏障来提高整个系统的 EMC 抗扰度,例如 IEC ESD/EFT/Surge。有关此主题的更多详细信息,请参阅白皮书:如何使用隔离来提高工业系统中的 ESD、EFT 和浪涌抗扰度
人是有限的,因此是渺小的。大小是相对的。人只是人类的一部分。后者需要前者。在脊椎按摩疗法中,我们向所有人传达信息。它不是由一个信息传递者来传达或传递给所有人。当任何小运动变大时,任何一个人的个性都会融入所有帮助他的人的一部分。在众多帮助者中,有些人与众不同,与大众分开;不是其中的一部分,而是与大众分开。我有幸拥有一群优秀的教师;他们热切、准备并愿意接受我的信息,将其传递给我们周围的那部分人类,以便他们可以将其传递给他们接触到的更大的圈子。在这些亲密友好的帮助者中,没有人比约翰·克雷文更忠实、更勤奋、更认真地对待脊椎按摩疗法哲学。他以前是一名勤奋的牧师,他准备好接受先进的思想。他的意愿比他的真诚更强烈。我和这位老师一起分析和综合了当时成为他教学一部分的细节,现在这些细节成为本书的详尽部分,这真是一段快乐的时光。第五版的出版功劳应该全部归于他,因此,将本书的献词荣誉归于他,也实属恰当。BJ PALMER。
摘要 — 在本文中,我们借助 MATLAB 模拟器研究了在 IBM-Q 硬件上运行的 Harrow-Hassidim-Lloyd (HHL) 量子算法中的错误传播和生成。HHL 是一种量子算法,在解决线性方程组 (SLE) 时,它可以比最快的经典算法(共轭梯度法)提供指数级加速。但是,如果没有错误校正,由于其复杂性,即使在 2 变量系统中也无法给出正确的结果。在本研究中,在 IBM-Q 中实现了 2 变量 SLE 的 HHL 量子电路,并在电路的每个阶段之后提取错误并与 MATLAB 模拟器进行比较。我们确定了三个主要的错误来源,即单量子位翻转、门不保真和错误传播。我们还发现,在辅助位旋转阶段,错误变大,但编码解决方案仍然具有高保真度。然而,在逆量子相位估计之后,解决方案大部分丢失,而逆量子相位估计是有效提取解决方案所必需的。因此建议,如果纠错资源有限,则应将其添加到电路的后半部分。
正如中国古谚所说,千里之行,难在第一步。没有什么旅程比每小时都在变大的山地景观更令人生畏了。然而,这准确地概括了管理数据和获得最全面、最新和最明智的情报所涉及的任务。Rosslyn Analytics 管理和分析数据已有近十年的时间,它见证了最佳和最差的做法,并吸取了教训,因此它可以帮助公司最大限度地在整个组织中应用信息和情报。所有组织都依赖数据,但他们成功利用数据的能力取决于许多变量,例如数据质量、信息访问、及时性和相关性。尽管所有组织在依赖数据方面都有共同的传统,但他们计划、采用和使用数据的方式却大不相同。我们认为,老式、非科学的数据方法类似于阻碍前几代人成长的饮食无知。缺乏对数据效力及其激发组织每个器官的能力的理解是更广泛的弊病的征兆。在接下来的部分中,我们将探讨这些主题并为激发活力的旅程创建路线图。通过这样做,您将能够确保您的组织不会成为 Gartner 估计的 33% 的财富 100 强组织之一,他们将经历信息
1 名古屋大学材料与系统研究所,日本名古屋 2 名古屋大学电气工程系,日本名古屋 电子邮件:{imanaka; s.sugimoto; tkato}@imass.nagoya-u.ac.jp;t.bigssk@gmail.com 摘要 — 可再生能源对于向孤岛电力系统供电具有吸引力。当光伏系统 (PV) 的渗透率变大时,电力需求无法消耗所有的 PV 输出,但需要减少 PV 输出。热泵热水器和电池储能系统的需求响应 (DR) 可以减少弃电。自来水系统也适合 DR 资源,因为许多自来水系统都有大型水箱或水坝作为蓄水池。为了充分利用自来水系统的巨大灵活性,需要对 DR 资源进行多日协调控制。本文首先建立了包含多个需求响应资源的孤立电力系统优化模型,作为制定协调控制方法的第一步。对比了2周优化和1天优化下需求响应资源的运行情况,分析了5种光伏容量设置下长期规划的效果。仿真结果表明,需求响应协调控制的适用规则随季节和光伏安装容量的不同而不同。
物理学中的关键任务之一是进行测量以确定系统的状态。通常,测量的目的是确定物理参数的值,但也可以提出更简单的问题,例如“系统处于状态 A 还是状态 B?”。在量子力学中,后一种类型的测量可以使用量子假设检验的框架进行研究和优化。在许多情况下,人们可以明确地在极限中找到最佳测量,即人们可以同时访问大量 n 个相同的系统副本,并估计 n 变大时的预期误差。有趣的是,误差估计涉及各种量子信息理论量,例如相对熵,从而赋予这些量操作意义。在本文中,我们考虑量子假设检验在量子多体系统和量子场论中的应用。我们回顾了一些必要的背景材料,并详细研究了想要区分的两种状态在参数上接近的情况。相关的误差估计涉及相对熵方差等量,为此我们证明了一个新的不等式。我们探索自旋链和二维共形场论的最优测量策略,重点研究区分子系统的简化密度矩阵。事实证明,最优策略在实践中实施起来有些麻烦,我们讨论了一种可能的替代策略及其相应的误差。