1 加拿大安大略省多伦多市 SickKids 研究所遗传学和基因组生物学项目,2 加拿大安大略省多伦多市多伦多大学分子遗传学系,3 加拿大安大略省多伦多市病童医院应用基因组学中心,4 加拿大安大略省多伦多市多伦多大学人类生物学项目,5 加拿大安大略省多伦多市病童医院计算医学中心,6 加拿大安大略省渥太华大学东安大略省儿童医院研究所,7 美国马里兰州盖瑟斯堡 GeneDx,8 英国伦敦 Genomics England,9 加拿大安大略省多伦多市多伦多大学儿科系病童医院血液学/肿瘤学分部,10 加拿大安大略省多伦多市多伦多大学 Donnelly 细胞和生物分子研究中心 (CCBR),11 Lunenfeld-Tanenbaum 研究所(LTRI),西奈医疗系统,多伦多,安大略省,加拿大,12 癌症系统生物学中心(CCSB),丹娜法伯癌症研究所,马萨诸塞州波士顿,美国,13 多伦多大学计算机科学系,多伦多,安大略省,加拿大,14 多伦多大学儿童医院临床和代谢遗传学分部和儿科系,多伦多,安大略省,加拿大
1医学和人口遗传学计划,麻省理工学院和哈佛大学,马萨诸塞州剑桥市,美国马萨诸塞州剑桥市2142,美国2史丹利中心,麻省理工学院和哈佛大学,马萨诸塞州剑桥大学,美国马萨诸塞州剑桥市,美国3号,美国3号遗传学部,哈佛大学 02130, United States 5 Booz Allen Hamilton Inc, McLean, VA 22102, United States 6 Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States 7 Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States 8 Cooperative Studies Program, VA New York Harbor Healthcare System,布鲁克林,纽约州11209,美国和9号精神病学系,罗伯特·伍德·约翰逊医学院,新不伦瑞克省,新泽西州08901,美国 *通讯作者。斯坦利中心,麻省理工学院和哈佛大学,剑桥,马萨诸塞州02142,美国。电子邮件:giulio.genovese@gmail.com副编辑:Christina Kendziorski电子邮件:giulio.genovese@gmail.com副编辑:Christina Kendziorski
1 美国波士顿哈佛医学院丹娜—法伯癌症研究所肿瘤内科系;2 法国维尔瑞夫巴黎萨克雷大学、古斯塔夫·鲁西研究所、法国国家健康与医学研究院 U981、肿瘤学预测生物标志物和新型治疗策略;3 波士顿麻省总医院/哈佛医学院病理学系综合诊断中心;4 波士顿哈佛医学院麻省总医院癌症中心医学系;5 杰克逊维尔梅奥诊所血液学/肿瘤学分部;6 达勒姆杜克大学医学院;7 帕洛阿尔托斯坦大学医学院医学系肿瘤学分部;8 旧金山加州大学旧金山分校海伦·迪勒家庭综合癌症中心;9 美国图森亚利桑那大学癌症中心;10 巴西圣保罗以色列爱因斯坦医院; 11 华盛顿大学实验室医学与病理学系,西雅图;12 芝加哥大学医学院,芝加哥;13 美国德克萨斯大学 MD 安德森癌症中心胃肠道肿瘤内科肿瘤医学分部,休斯顿;14 上海嘉会国际肿瘤中心,吉豪医疗;15 上海天境生物制药有限公司,中国;16 华盛顿大学医学系,圣路易斯;17 梅奥诊所血液学/肿瘤学分部,斯科茨代尔;18 Guardant Health 医学事务部,雷德伍德城,美国
图 1 实验设计 A) 对于每个外显子,在 5' 和 3' 端设计两个独立的 sgRNA 和相关的 HDR 变体文库。B) 将 sgRNA 和 HDR 变体文库一起转染到表达 LIG4 -KO Cas9 的 HAP1 细胞中。sgRNA 指导 Cas9 介导的双链 DNA 切割到目标外显子。HDR 利用质粒文库作为修复模板,将单个感兴趣的 DDX3X 变体整合到每个细胞的内源位点中。每个供体模板还携带 1-3 个 NGG PAM 位点和原型间隔物的同义变化,防止重新切割。由于 DDX3X 是必需的,消除基因功能的变体会导致这些细胞死亡。我们在第 4、7、11、15 和 21 天对细胞进行取样,并对基因组 DNA 进行深度测序以量化变体的丰度。我们预计功能性错义(紫色)和同义变体(Syn,蓝色)仍然丰富,而功能丧失变体(LOF,红色)和有害错义(黄色)变体将从培养物中耗尽。
。CC-BY 4.0 国际许可(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 2 月 13 日发布。;https://doi.org/10.1101/2025.02.08.635393 doi:bioRxiv 预印本
药物不良反应 (ADR) 的发生是患者健康和医疗保健行业关注的重要问题,因为每年造成数十亿美元的损失。ADR 占所有住院患者的 5% 到 7%,是医院死亡的第五大原因。[1-3] ADR 是指对正常剂量的药物治疗产生的有害和非预期反应。多种因素可能会影响其发生,包括多重用药、年龄、处方药类型和基因组变异。[4] 例如,据报道,联合用药引起的药物相互作用 (DDI) 占所有 ADR 的 30%。[5] 此外,遗传因素和结构变异也可能使人易患某些 ADR。据报道,药物基因组学占药物疗效和安全性变异的约 80%。[6] 因此,确定这些 ADR 的潜在机制对于限制其严重程度和死亡率以及提高药物安全性是必要的。由于大量药物与多个靶标相互作用,扰动蛋白质相互作用网络系统范围的方法可能更适合捕捉药物对人体的影响。[7–8] 人们提出了各种将 ADR 与药物作用联系起来的方法。一种常见的方法是将药物化合物的化学结构与一组特定的 ADR 关联起来。[9–11] 然而,化学上不相关的结构可能会有相同的 ADR,靶向相似的脱靶或途径。为了克服这一限制,人们研究了基于靶标分析相似性和副作用相似性的方法。[12–13] Campillos 等人 [14]
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2021年6月16日。 https://doi.org/10.1101/2021.04.26.441431 doi:biorxiv preprint
近膜 (JX) 结构域,其中包含 PKC 磷酸化位点 (S985)、胱天蛋白酶切割位点 (D1002) 和 E3 泛素连接酶 CBL (Casitas-B 系淋巴瘤) 对接位点 (Y1003),均控制 RTK 活性的下调 (图 1a)。3–7 这种改变破坏了外显子 14 两侧的内含子剪接位点,包括内含子 13 的剪接受体位点和内含子 14 的剪接供体位点,或外显子 14 编码序列本身内的突变,都会导致外显子 14 在转录本中跳跃。这些突变中最常见的是碱基替换,其次是插入/缺失。因此,导致MET外显子14跳跃的可变剪接事件会激活MET-HGF通路,促进肿瘤细胞增殖、迁移,并阻止细胞凋亡(图1b)。
一项 II 期研究评估了 rucaparib 对伴有 DDR 缺陷的 mCRPC 患者的疗效。该研究招募了年龄在 18 岁及以上的男性,经组织学或细胞学确诊为 mCRPC,东部肿瘤协作组体能状态为 0 或 1,且器官功能正常。符合条件的患者在 BRCA1、BRCA2 或另一个预先指定的 DDR 基因中存在有害的种系或体细胞改变,这些改变可能赋予对 PARP 抑制的敏感性,并且在接受一至两种针对前列腺癌的下一代 AR 靶向治疗和一种针对去势抵抗性疾病的紫杉烷类化疗后病情出现进展。患者必须同时接受促性腺激素释放激素类似物治疗或接受过双侧睾丸切除术。排除之前接受过 PARP 抑制剂、米托蒽醌、环磷酰胺或铂类化疗或患有活动性继发性恶性肿瘤的患者。患者入组时不考虑可测量的疾病状态(补充数据)。完整的资格标准在方案中进行了描述(补充数据)。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2025 年 1 月 29 日发布。;https://doi.org/10.1101/2025.01.29.635411 doi:bioRxiv 预印本
