在过去的几年中,基于深度学习的技术在医学图像处理领域取得了很大进展,例如分割和配准。这些方法的主要特点是对医学图像进行模型训练的需求量很大。然而,由于成本高昂和道德问题,获取这些数据通常很困难。因此,缺乏数据可能导致性能不佳和过度拟合。为了解决这个问题,我们在本文中提出了一种数据增强算法,用于在健康儿童脑 MRI 图像上修复肿瘤以模拟病理图像。由于肿瘤的生长可能导致周围组织变形和水肿(这被称为“质量效应”),因此使用概率 UNet 来模拟这种变形场。然后,不是直接将肿瘤添加到图像中,而是使用基于 GAN 的方法将蒙版转移到图像上,使其在视觉和解剖学上都更合理。同时,通过将变形场应用于原始标签,还可以获得不同脑组织的注释。最后,将合成图像与真实数据集一起进行训练以进行肿瘤分割任务,结果表明准确度有统计上的提高。
可变形配准是纵向和基于人群的图像分析的基础。然而,由于婴儿时期大脑发育迅速,精确配准同一受试者的纵向婴儿大脑 MRI 图像以及不同受试者的横截面婴儿大脑 MRI 图像具有挑战性。在本文中,我们提出了一种可循环使用的深度神经网络来配准婴儿大脑 MRI 图像。我们提出的方法有三个主要亮点。(i)我们使用脑组织分割图而不是强度图像进行配准,以解决生命第一年脑组织对比度快速变化的问题。(ii)单个配准网络以一次性方式训练,然后多次循环应用于推理,从而可以逐步恢复复杂的变形场。(iii)我们还在配准网络中提出了自适应平滑层和组织感知反折叠约束,以确保估计变形的生理合理性,而不会降低配准精度。与最先进的配准方法相比,实验结果表明,我们提出的方法实现了最高的配准精度,同时仍保持了变形场的平滑度。我们提出的配准网络的实现可在线获得。
我们提出了来自单眼RGB视频的动态3D头部重建的单眼神经参数头模型(Mono NPHM)。到此为止,我们提出了一个潜在的空间空间,该空间在神经参数模型的顶部参数化纹理场。我们限制了预测的颜色阀与基础几何形状相关,以便RGB的梯度有效地影响反向渲染过程中的潜在几何代码。为了提高表达空间的代表能力,我们使用超二维增强了向后变形场,从而在拓扑具有挑战性的表达式中显示出颜色和几何表示。使用Mono NPHM作为先验,我们使用基于符号距离字段的体积渲染来处理3D头重建的任务。通过nu毫无反转,我们使用面部锚点构成了具有里程碑意义的损失,这些损失与我们的规范几何表示紧密相关。为了评估单眼RGB视频的动态面部重建任务,我们在休闲条件下记录了20个具有挑战性的Kinect序列。单nphm超过 -
本文引入了一个新的框架,用于表面分析,该框架源自形状空间上的弹性Riemannian指标的一般设置。传统上,这些指标是在沉浸式表面的无限尺寸流形上定义的,并满足特定的不变特性,从而可以比较表面模型形状保存变换,例如重新构度。我们方法的特异性是将允许转换的空间限制为变形场的预定义有限尺寸基础。这些以数据驱动方式估算,以模拟特定类型的表面变换。这使我们可以简化对相应形状空间的代表到有限的尺寸潜在空间。然而,与涉及涉及的方法形成鲜明对比。网状自动编码器,潜在空间配备了从弹性指标家族继承的非欧国人Riemannian指标。我们演示了如何有效地实现该模型以在表面网格上执行各种任务,这些任务不假定这些模型已预先注册,甚至没有一致的网格结构。我们专门验证了我们对人体形状和姿势数据的方法以及人的面部和手部扫描,例如形状注册,插值,运动转移或随机姿势产生等问题。
(24)中与变形换向器有关的物理理论的构建具有悠久而丰富的传统,例如[20,21,26,27],以及许多其他参考文献。这种非交通率依赖于通勤坐标(标准)函数代数之间的映射(标准)和非交换坐标的功能。典型成分是换向器(24)本身[21]。在本节中,我们将提供可能应用配方的示例。鉴于该字母的结果的一般性,我们不会通过重点关注全面的量子电动力计算来做到这一点。后者需要面对必须处理无质量颗粒的微妙之处,这是指向克莱因悖论的问题,尽管在交换性的环境中,但已经以某种方式面对石墨烯的代数[28]。已经计划在此处提出的方法中进行非交流性克莱因悖论的未来工作[29]。我们将要做的是专注于运动学,这是测试本工作中引入的新型非交通性的最直接方法。(24)。这不需要应用变形场理论的完整动态来描述过程。我们只需要识别该位置操作员代表动量空间上有限位移的发生器。由于它们不上下班,这也意味着该动量的有限位移只有在界线时会上下班,但通常,它们不会上下班。电子动量位移的作用代表光子的吸收或发射。使用
基于深度神经网络 (DNN) 的图像配准算法中的不确定性量化在图像配准算法用于临床应用(例如手术规划、术中指导、病情进展或治疗效果的纵向监测)以及面向研究的处理流程中起着至关重要的作用。当前用于基于 DNN 的图像配准算法中不确定性估计的方法可能会导致次优临床决策,因为对于假设的配准潜在空间参数分布的配准词干的不确定性估计可能不准确。我们引入了 NPBDREG,这是一种完全非参数贝叶斯框架,用于基于 DNN 的可变形图像配准中的不确定性估计,它结合了 Adam 优化器和随机梯度朗之万动力学 (SGLD),通过后验采样来表征底层后验分布。因此,它有可能提供与分布外数据的存在高度相关的不确定性估计。我们使用来自四个公开数据库(MGH10、CMUC12、ISBR18 和 LPBA40)的 390 个图像对,证明了 NPB-DREG 与基线概率 VoxelMorph 模型 (PrVXM) 相比在脑部 MRI 图像配准方面的附加值。NPBDREG 显示预测不确定性与分布外数据的相关性更好(r > 0.95 vs. r < 0.5),并且配准准确度提高了 ∼ 7.3%(Dice 分数,0.74 vs. 0.69,p ≪ 0.01),配准平滑度提高了 ∼ 18%(变形场中的褶皱百分比,0.014 vs. 0.017,p ≪ 0.01)。最后,与基线 PrVXM 方法相比,NPBDREG 对受混合结构噪声破坏的数据表现出更好的泛化能力(Dice 得分为 0.73 对 0.69,p≪0.01)。
摘要。我们开发了一种调整海冰流变性参数的新方法,该方法由两个组成部分组成:一种用于表征海冰变形模式的新指标和一种基于机器学习的方法(ML)基于调整流变学参数的方法。我们应用了新方法来调整脆弱的宾厄姆 - 麦克斯韦变流变性(BBM)参数,该参数已在下一代海冰模型(Nextsim)中实施并使用。作为参考数据集,我们使用了Radarsat地球物理处理系统(RGP)的海冰漂移和变形观测。度量标准表征了具有值载体的海冰变形场。它包括完善的描述器,例如变形的平均值和标准偏差,空间缩放分析的结构 - 功能以及线性运动学特征(LKFS)的密度和相交。我们将更多描述符添加到表征冰变形模式的度量标准中,包括图像各向异性和Haralick纹理特征。开发的度量可以从任何模型或卫星平台上涂抹冰变形。在参数调整方法中,我们首先运行具有扰动的流动性插曲的Nextsim成员的团队,然后使用相似的数据训练机器学习模型。我们将冰变形的描述作为ML模型和流变参数的输入作为目标。我们将经过训练的ML模型应用于从RGPS观测值计算的描述符。开发的基于ML的方法是通用的,可用于调整任何模型的参数。1 kPa),在参考量表上的内聚力(c ref≈1。00228)。我们使用数十个成员进行了实验,并找到了四个Sextsim BBM参数的光学值:缩放Pa-Rameter的抗压强度(P0≈5。2 mpa),内部摩擦和切线(µ≈0。7)和冰 - 大气阻力系数(ca≈0。与最佳的选言一起运行的次要运行,在视觉上产生海冰变形的地图 -
摘要 — 深部脑刺激 (DBS) 的疗效取决于电极放置的准确性,而手术中钻孔和硬脑膜打开造成的脑移位可能会危及电极放置的准确性。脑移位违反了术前图像和术中解剖结构之间假定的刚性对齐,对治疗产生负面影响。目的:本研究提出了一种基于变形图谱生物力学模型的方法来解决移位问题。方法:研究了 6 名接受介入磁共振 (iMR) 图像引导的 DBS 钻孔手术的患者。在不同的手术条件下采用特定于患者的模型,生成一组可能的术中移位估计或“变形图谱”。由来自 iMR 的稀疏测量驱动逆问题,以确定图谱解的最佳拟合。然后使用该拟合获得体积变形场,该场用于更新术前 MR 并估计在 iMR 上定位的手术目标区域的移位。通过定量比较术中次表层测量值与模型预测值,以及定性比较 iMR、术前 MR 和模型更新的 MR,检查模型性能。引入非刚性图像配准作为比较器。结果:基于模型的方法将一般实质移位从 8.2±2.2 毫米减少到 2.7±1.1 毫米(~66.8% 校正),并且产生的更新 MR 与 iMR 的一致性优于术前 MR。模型估计的目标区域平均移位为 1.2 毫米。结论:本研究证明了基于模型的移位校正策略在仅使用稀疏数据的 DBS 手术中的可行性。意义:所开发的策略有可能补充和/或增强当前解决移位问题的临床方法。索引词 — 脑移位、计算建模、深部脑刺激、图像引导神经外科手术
X 射线相衬成像 (X-PCI) 与先进光子源 (APS) 的动态加载平台相结合,用于提供通过增材制造 (AM) 制备的高固体负载聚合物复合材料的时间和空间分辨的冲击压缩响应。增材制造(3D 打印)提供的几何灵活性和多功能性开辟了控制材料性能并通过结构设计在功能上定制材料以适应特定应用的新途径。增材制造的材料可以具有广泛的结构特性,具有长度尺度的层次和工艺固有的异质性,例如不均匀的成分分布、界面、孔隙和裂纹。其中许多特征难以精确控制或避免。因此,了解微观和中观尺度结构属性和异质性如何影响受到冲击压缩载荷的聚合物复合材料的性能非常重要。我们分析了在 AFRL-Eglin 制造的增材制造聚合物复合材料(74vol% 颗粒在紫外线引发的甲基丙烯酸酯粘合剂中)的冲击压缩响应。单轴应变板撞击实验以不同的速度进行,撞击沿相对于打印图案的不同方向进行。时间分辨 X 射线相位对比成像 (X-PCI) 用作材料诊断的内部。通过以 ~154 纳秒时间分辨率和 2.45 微米空间分辨率的 X-PCI 跟踪观察到的冲击前沿的特征,我们能够确定冲击速度与粒子速度的状态方程 (EOS)。体积平均粒子速度也是从光多普勒速度 (PDV) 干涉测量捕获的表面运动中获得的,这表明与从 X-PCI 图像获得的粒子速度几乎一一相关。沿不同冲击方向的冲击压缩响应显示出线性冲击和粒子速度关系,没有明显的方向依赖性,这可能是由于实验中使用的 2 x 3 x 6 毫米样品的整体尺度上定向孔隙率可以忽略不计。样品中的内部变形场也通过对 X-PCI 图像进行数字图像相关 (DIC) 分析进行量化,从而首次评估了冲击压缩载荷下聚合物复合材料内部的平均应变场。总体结果证明了 X 射线 PCI 在探测与异质材料冲击压缩相关的“材料内”状态方程和内部应变方面的实用性和有效性。
磁共振图像配准中 SNR/分辨率权衡的优化 S. Kale 1,2、JP Lerch 1、RM Henkelman 1,2 和 XJ Chen 1,2 1 小鼠成像中心,加拿大安大略省多伦多,2 多伦多大学医学生物物理学,加拿大安大略省多伦多 简介 配准是医学图像分析的重要工具,其应用包括评估纵向研究中的变化、构建数字图谱和执行形态分析。后者在研究疾病特定人群和大脑发育生物学方面发展尤为迅速 1 。配准已广泛用于磁共振 (MR) 图像,其中成像在捕捉神经解剖结构方面提供了极大的灵活性。用户可以以任意分辨率和方向获取 3D 体积或 2D 切片数据,同时可以定义视野以适合任何对象。一个限制因素是总成像时间,这让用户不得不在分辨率和信噪比 (SNR) 之间做出权衡决定。通常,会调整采集参数以使生成的图像满足人类的视觉偏好,但是,由于图像配准是一项计算机分析任务,因此优化应响应计算机分析的需求。本摘要介绍了一项研究,该研究旨在调查在恒定扫描时间内 MR 成像中 SNR 和分辨率之间的最佳权衡,以实现最佳配准精度。方法虽然任何解剖结构的图像都可以,但我们使用的是通过高质量显微镜协议获取的固定小鼠神经解剖结构图像。固定脑标本的原位成像准备方法与之前描述的方法类似 2 。成像是在 7 T 磁体上使用多通道 Varian INOVA 控制台和三线圈探头进行的,以进行并行样本成像。扫描参数包括:快速自旋回波脉冲序列,TR/TE = 325/8 毫秒,6 次回波(第四次回波位于 k 空间中心),TE eff = 32 毫秒,90° 翻转角,14 毫米 x 14 毫米 x 25 毫米 FOV,432 x 432 x 780 扫描矩阵,4 个平均值(NA)。成像时间为 11.3 小时,每次可获得三个大脑的 T2 加权图像,每个图像有(32 微米)3 个体素。扫描了十个大脑。图像在均质白质中的平均 SNR 为 16。这些图像代表了黄金标准。从每个黄金标准图像中模拟了五个降级权衡图像,以模拟 1.9 小时的采集时间,但以牺牲 SNR 或分辨率或两者为代价。第一步需要从黄金标准数据中选择 k 空间的子体积来表示降级的分辨率。选择了五个子体积,以下称为权衡 AE ,权衡之间的体素体积步长为 2 倍(表 1,顶部)。第二步涉及向原始数据添加高斯分布随机白噪声,以模拟权衡数据中适当的相对 NA,从而固定总有效成像时间(1.9 小时)。然后,使用 ANIMAL 3,4 将来自每个权衡组和金标准组的图像独立地配准到使用仿射和非线性配准 5 的无偏平均图谱。变形场可用于识别形态学差异,它由非线性配准产生,并用于评估权衡组相对于金标准配准的配准精度。均方根误差 ( RMSE ) 度量,其中 ( ) 2 1 2 / / ) ( ) ( ∑ − = NN RMSE ioirdrd ,