摘要:隧道内部变形是由于上部结构附加荷载、超载、岩土体内部应力等因素引起的。隧道变形测量对于确定隧道塑性变形的大小具有重要意义,是隧道安全监测的重要环节。本研究采用有限元法分析了位于四层岩层中、受地下水影响、采用新奥隧道施工方法 (NATM) 逐步开挖的马蹄形或蛋形隧道的三维非线性行为。详细研究了随着开挖步骤的不同,拱顶和隧道周围受到不同载荷条件作用而发生的永久变形。此外,通过变形曲线对两种隧道几何形状下所有开挖阶段隧道关键段发生的永久变形进行了相对比较。已经确定,选择隧道几何形状为蛋形而不是马蹄形更有利于减少浅层和层状岩石环境中的下沉和收敛量。
摘要:键合线是电力电子模块 (PEM) 中最容易发生故障的部件之一,通常使用硅胶包裹键合线。为了研究硅胶包裹键合线的变形,本文报告了使用线场光学相干断层扫描 (LF-OCT) 技术精确测量键合线的电-热-机械 (ETM) 变形的方法。由于 LF-OCT 系统具有有利的并行检测方案,因此我们开发了一种 LF-OCT 系统,该系统可一次性捕获键合线样品的整个横截面图像 (B 扫描)。结合傅里叶相位自参考技术,可以定量测量键合线的变形,精度可达 0.1 nm。当将相机成像尺寸设置为 1920×200 像素时,实现的变形测量的最大采样率(帧率)为 400 Hz,为监测键合线的 ETM 变形动态提供 2.5 ms 的时间分辨率。我们发现凝胶包裹的键合线的 ETM 变形比裸键合线的 ETM 变形大约小三倍。这些结果首次实验证明,LF-OCT 可成为研究硅凝胶包裹键合线随时间变化的 ETM 变形的有用分析工具。索引术语-键合线可靠性、硅凝胶、电-热-机械变形、线场光学相干断层扫描 (LF-OCT) I. 引言电力电子模块 (PEM) 广泛用作可再生能源发电和运输电气化中的开关半导体器件 [1]。由于 PEM 通常应用于安全和关键任务场景,如电力列车、航空航天和海上风电,因此 PEM 的可靠性受到学术界和工业界的广泛关注 [2-4]。引线键合技术是目前最广泛使用的封装方法