回应首席秘书政府的要求。每天对2023年10月9日至2023年10月23日的South Lhonak Lake和Shako Chho Lake进行监测。进行了地质研究,以评估两个湖泊和周围岩性,地貌和地质结构的影响(结构层取自Bhukosh,GSI)。这有助于理解与湖泊相关的潜在风险和漏洞。还使用MODIS数据对土地表面温度(LST)进行每日监测,以检测可能导致冰川变形的温度突然变化。地震活动(https://seismo.gov.in/)每天都在湖附近进行密切监测,因为它可能对湖泊周围地层的变形或弱化产生直接或间接影响。的气象数据,包括降雨和温度,每天也监测,以确定任何可能触发警报的异常趋势。也已定期监视可免费获得的卫星数据以查看任何
摘要:近年来,半导体封装结构不断薄型化、复杂化,随着厚度减小,因材料不匹配引起的界面剥离现象会进一步增加,因此界面的可靠性是工业领域中的关键问题。尤其在半导体封装中广泛使用的聚合物受温度和湿度的影响较大。因此,本研究通过有限元分析对不同温度条件下封装结构界面的剥离情况进行预测,考虑吸湿和解吸的水分。通过吸湿试验获得了材料的扩散率和饱和含水量等性能。通过TMA和TGA分析了每种材料吸湿后的吸湿膨胀系数。进行微剪切试验,评估考虑湿度影响下各界面在不同温度下的黏附强度。进行了考虑温度和吸湿变形的界面剥离有限元分析。因此,考虑到回流过程中的原位水分解吸和温度行为,成功预测了界面分层。
摘要:隧道内部变形是由于上部结构附加荷载、超载、岩土体内部应力等因素引起的。隧道变形测量对于确定隧道塑性变形的大小具有重要意义,是隧道安全监测的重要环节。本研究采用有限元法分析了位于四层岩层中、受地下水影响、采用新奥隧道施工方法 (NATM) 逐步开挖的马蹄形或蛋形隧道的三维非线性行为。详细研究了随着开挖步骤的不同,拱顶和隧道周围受到不同载荷条件作用而发生的永久变形。此外,通过变形曲线对两种隧道几何形状下所有开挖阶段隧道关键段发生的永久变形进行了相对比较。已经确定,选择隧道几何形状为蛋形而不是马蹄形更有利于减少浅层和层状岩石环境中的下沉和收敛量。
从生物复合眼中获得灵感,人造视觉系统具有生动的各种视觉功能性状,最近才脱颖而出。然而,大多数这些人造系统都依赖于可转换的电子设备,这些电子设备遭受了全局变形的复杂性和约束几何形状,以及光学和检测器单元之间的潜在不匹配。在这里,我们提出了独特的针孔复合眼,将三维印刷的蜂窝光学结构与半球形,全稳态,高密度的钙钛矿纳米纳米型光电探测器阵列结合在一起。无镜头的针孔结构可以使用任意布局设计和制造,以匹配基础图像传感器。光学模拟和成像结果彼此良好,并证实了我们系统的关键特性和功能,其中包括超级视野,准确的目标定位和运动跟踪功能。我们通过成功完成移动的目标跟踪任务,进一步证明了我们独特的复合眼对先进的机器人视觉的潜力。
人造实体之间的人类相似性和美学偏好之间的关系被认为是由n形的立方“不可思议的山谷”功能建模的,该功能受到概念上的批评和缺乏pars症的影响。这里有人认为,不符合性效应可能是由通过感知专业化调节的偏差的线性函数来建模的。在一个实验中比较了两种模型,该实验具有五种逐渐变形的面部类型(卡通,CG,绘图,真实,机器人)。对直立和倒立面孔的识别表现被用作专业措施。专业化显着调节失真对不符合性的线性效应,并且可以比传统的不可思议的山谷更好地解释数据。因此,不可思议的山谷可以更好地理解为专业化敏感的线性函数的调节函数。这个更简单,更准确的模型与神经认知理论兼容,可以解释传统不可思议的山谷以外的不隔离效应。
自动从单个深度进一步检测可抓地的区域是布操作中的关键要素。布料变形的巨大变异性促使当前大多数方法专注于识别特定的握把而不是半偏零件,因为当地区域的外观和深度变化比较大的区域更小,更易于建模。但是,诸如折叠或辅助敷料之类的任务需要识别较大的细分市场,例如语义边缘带有更多信息,而不是点。因此,我们首先仅使用深度图像来解决变形衣服中细粒区域检测的问题。我们实施了T恤的方法,并最多定义了多达6个不同程度的语义区域,包括领口,袖袖和下摆的边缘,以及顶部和底部的握把。我们引入了一个基于U-NET的网络,以细分和标记这些部分。我们的第二个贡献与培训拟议网络所需的监督水平有关。大多数方法都学会
非常需要设计纳米颗粒表面形状的局部变化。这是因为这些修饰阳离子可以改善生物相容性和细胞摄取。23在这里,我们描述了一种在含核碱酶的多聚膜膜外表面形成局部变形的方法。我们表明,在插入包含互补核酶的二嵌段共聚物时,类似触手的节点可以在聚合物的表面形成(图1b)。与蓄水池一样,膜变形和随之而来的淋巴结形成依赖于不同的膜成分之间的互补氢键。将核碱酶配对的可编程性纳入自组装合成聚合物24 - 28先前已被利用以控制纳米颗粒形态,29 - 35瓶刷组件36和颗粒表面化学,37,以及37层的聚合,38,39货物货物40 - 42-42-42-42-42-42-42和增强的水。43
个人热管理可有效管理皮肤微环境、提高人体舒适度、降低能耗。在个人热管理技术中,由于湿敏纺织品中水分蒸发潜热高,导致热量传递和水分传递共存、相互作用。近年来,随着材料科学和创新聚合物的快速发展,湿敏纺织品已被开发用于个人热管理。然而,实验室规模的概念设计与实际纺织品之间存在很大差距。本文综述了基于襟翼开合的湿敏纺织品、基于纱线/纤维变形的湿敏纺织品和基于纺织品设计的个人体温调节的汗液蒸发调节,并讨论了相应的机制和研究进展。最后,考虑了现有的工程和科学限制以及未来的发展,以解决现有问题并加速湿敏纺织品和相关技术的实际应用。
晶粒尺寸是确定性的微观结构特征,可以使六角形封闭式(HCP)金属中变形的作用。尽管变形孪生是改善结构合金强度 - 降解性权衡的最有效机制之一,但随着晶粒尺寸的减少,其激活降低。这项工作报告了通过引入延性延展性的以身体为中心的立方体(BCC)纳米层接口的细粒度HCP微结构中变形孪生激活的发现。利用基于激光的添加剂制造的快速凝固和冷却条件,以获得精细的微观结构,并与强化的内在热处理结合使用,允许生成BCC纳米层。原位高能同步加速器X射线衍射允许实时跟踪机械孪生的激活和演变。获得的发现显示了延性纳米层的潜力,用于具有改善寿命跨度的HCP损伤耐受材料的新设计。
摘要:光学畸变阻止望远镜达到其理论衍射极限。一旦估计,这些畸变就可以通过在闭环中使用可变形的镜子进行补偿。焦平面波传感可以直接从科学传感器拍摄的图像中估算完整光路的畸变。但是,当前的局灶性平面波前传感方法依赖于物理模型的物理模型,这些模型可能会限制校正的整体性能。这项研究的目的是使用无模型的增强学习来开发一种数据驱动的方法,以自动执行对像差的估计和校正,仅使用围绕焦平面围绕焦平面作为输入而获得的相位多样性图像。我们在加强学习的框架内提出校正问题,并在模拟数据上培训代理。我们表明该方法能够可靠地学习各种现实条件的有效控制策略。我们的方法还证明了对广泛的噪声水平的鲁棒性。