作为男性父母,事件E1,E2和E5的相对种子集效率分别为37.89%,61.82%和83.76%(表1和补充图。9)。这些发现进一步表明,Accenh3的敲低影响了种子集。差异种子集可能是在相互交叉中观察到的转基因偏置隔离变形的原因之一。我们的观察结果
用于生产合金和最终产品的创新连续铸造和半固体创新的铸造过程,用于轻巧应用塑料变形的冶金方面,用于智能微观结构设计创新,纳米结构化材料创新和数字化的涂料创新,以减少成本和排放的材料:精益制造和设计设置为材料创新的创新创建
塑料故障是用于塑料一生中发生在塑料中的任何类型的变形的常见术语。失败的主要类型包括磨损,裂纹,降解,失真和美学改变。这些故障可能会影响使用特定塑料部分的应用程序的性能和使用寿命。为了避免此类问题,了解塑料失败的类型和原因很重要。
人类的视野比在分布外情景下表现出的鲁棒性更高。它已经通过逐个合成的分析来猜想这种鲁棒性益处。我们的论文通过通过渲染和能力算法在神经特征上进行近似分析,以一致的方式制定三重视觉任务。在这项工作中,我们引入了神经丝线可变形的网格(NTDM),该网格涉及具有变形几何形状的OBJECT模型,该模型允许对摄像机参数和对象几何形状进行优化。可变形的网格被参数化为神经场,并被全表面神经纹理图所覆盖,该图被训练以具有空间歧视性。在推断过程中,我们使用可区分渲染来最大程度地重建目标特征映射,从而提取测试图像的特征图,然后对模型的3D姿势和形状参数进行优化。我们表明,在现实世界图像,甚至在挑战分布外情景(例如闭塞和主要转变)上进行评估时,我们的分析比传统的神经网络更强大。在经常性能测试测试时,我们的算法与标准算法具有竞争力。
摘要 - 到目前为止,行星表面探索取决于各种移动机器人平台。这些移动机器人在复杂地形中的自主导航和决策在很大程度上依赖于他们的地形感知,本地化和映射功能。在本文中,我们释放了尾巴数据集,这是行星勘探机器人可变形的颗粒环境中的新挑战性数据集,这是我们先前工作的扩展,即尾部(Terrain-Terrain-Terrain-Iake Modi-Modal)数据集。我们在海滩上进行了实地实验,这些海滩被认为是多种沙质地形的行星表面模拟环境。在尾部加数据集中,我们提供了更多带有多个循环的序列,并从白天到晚上扩展场景。从模块化设计中受益于我们的传感器套件,我们使用轮子和四倍的机器人进行数据收集。传感器包括一个3D激光雷达,三个向下的RGB-D摄像头,一对全球式彩色摄像机,可用作前瞻性立体声摄像头,RTK-GPS设备和额外的IMU。我们的数据集旨在帮助研究人员在非结构化的,可变形的颗粒状地形中开发多传感器的同时定位和映射(SLAM)算法。我们的数据集和补充材料将在https://tailrobot.github.io/上找到。
15.船舶结构委员会及其成员机构赞助的补充说明 16.摘要 本文提出了一种基于固有应变理论结合有限元法预测加筋曲板焊接变形的有效方法(等效载荷法)。该方法可以预测加筋曲板焊接变形的各种模式,例如角变形、面内收缩、纵向和横向弯曲变形,并考虑按制造阶段进行的焊接顺序。等效载荷是通过积分固有应变分量来确定的,固有应变分量是在使用最高温度和约束程度计算的热影响区附近计算的。通过弹性分析计算了等效载荷下的曲板加筋焊接变形,并与实验和热弹塑性有限元分析进行了比较。用所提方法计算的加筋曲板焊接变形与试验和有限元分析结果有较好的一致性。实践证明,所提方法具有较高的效率和准确性。用所提方法可以预测实船曲型双底分段的焊接变形。本方法高效、准确,为预测结构形状复杂度较高的实船船体分段焊接变形提供了有力的解决方案。17.关键词 铝结构 海洋结构 铝设计 铝加工
NAVSEA 标准项目 FY-24 项目编号:009-92 日期:2022 年 10 月 25 日 类别:II 1. 范围:1.1 标题:弹性支架;安装 2. 参考:2.1 标准项目 2.2 设备技术手册 2.3 S9073-A2-HBK-010,安装和检查信息弹性支架手册 3. 要求:3.1 在拆除支架前,检查是否存在严重错误装载或变形的支架,请使用 2.2 和 2.3 作为指导。3.1.1 在发现情况后 3 天内,以批准的可传输介质向主管提交一份清晰的严重错误装载或变形的支架副本。3.2 拆除弹性支架组件,请使用 2.2 和 2.3 作为指导。 3.2.1 检查每个设备基础的结构完整性、老化、凹陷、裂缝和损坏或变形区域。3.2.1.1 在设备拆除后 5 天内,向主管提交一份清晰的报告副本,该报告以批准的可传输介质形式列出 3.2.1 要求的结果。3.2.2 已拆除弹性安装组件的每个基础的受干扰表面的清洁和涂漆必须符合 NAVSEA 标准项目(见注释 4.3)。3.3 按照 2.3 选择、采购、组装、安装、装载和调整新的弹性安装组件,包括负载螺栓、基础螺栓、螺母和缓冲器。
本发明将薄膜和基底之间存在错配应变时材料行为的变化关联起来。为了量化目的,发明人对沉积在厚蓝宝石/硅基底上的氮化镓 (GaN) 薄膜进行了纳米压痕数值实验,以评估薄膜中的负载与变形。这对于电子工业和 MEMS、NEMS、LED 等设备非常重要,因为变形的微小变化会影响这些设备的性能。印度专利
准确评估地下地质条件对于地下能源资源的可持续管理至关重要。随着浅层储量枯竭导致能源勘探向更深的深度延伸,地质变形的复杂性也随之增加。为了应对这些挑战,人们一直在努力将各种地球物理、岩土工程和地质调查与分析和数值模型相结合,但由于地下非均匀性、流变性质变化和复杂的应力状态,理解变形机制仍然十分困难。虽然在测量技术和先进建模方面取得了重大进展,但仍然迫切需要将数据和精确的地质模型结合起来,从而增强与地下挖掘和资源开采相关的变形的量化。这种综合方法对于管理带来巨大社会风险的不确定地质条件至关重要(Khan 等人,2021 年;Khan 等人,2022 年)。尽管地球物理技术已应用于动态地质灾害的监测和预警,但由于信息识别、数据挖掘和处理方面的限制,灾害风险的精确识别和分类仍然具有挑战性。有效预防和控制动态地质灾害需要快速动态监测、多维智能分析和综合预警策略。为此,本研究主题的目标是通过创新的地球物理工作流程、智能方法和数值建模技术展示评估、预测和预防动态地质灾害的最新进展。探索创新理论、方法和技术,以
考虑了这个问题。为了解决这个问题,开发了一种计算悬架在最大载荷下的强度的方法,并对车辆主要运行模式下的结构进行了建模。对车辆在最大载荷下的数学建模,以确定结构元件中的临界力和最大应力,以及对无残余变形的分析。所进行的计算、数学和模拟建模证明,在车辆最严酷的运行模式下,悬架的所有元件在最大载荷下都满足必要的强度条件。