摘要。透视失真(PD)导致形状,大小,方向,角度和其他空间关系的前所未有的变化。精确地估计摄像机的固有和外在参数是一项防止综合透视失真的挑战任务。专用培训数据的不可利用性为开发强大的计算机vi-sion方法带来了关键的障碍。此外,失真校正方法使其他计算机视觉任务成为多步骤的方法,并且缺乏性能。在这项工作中,我们通过对Möbius变换的特定家族进行精细颗粒的Pa-Rameter控制来构成减轻透视扭曲(MPD),以模拟现实世界中的失真,而无需估计摄像机的内在和外在参数,并且没有估算实际静止数据的需求。此外,我们提出了一个专用的透视图基准数据集Imagenet-PD,以基准对该新数据集的深度学习模型的鲁棒性。所提出的方法优于ibendement-e和imagenet-X的基准。此外,它显着提高了Imagenet-PD的性能,同时始终如一地在标准数据分布上执行。值得注意的是,我们的方法在三种受PD影响的现实世界应用程序(牛仔计数,Fisheye Image补充和人员重新识别)上的性能提高,以及一个受PD影响的具有挑战性的CV任务:对象检测。源代码,数据集和模型可在https://prakashhipa.github.io/projects/mpd上的项目网页上找到。
结果表明,由于背景图像噪声比颗粒尺寸更占主导地位,因此无法辨别晶圆上的颗粒。另一方面,所提出的方法可以以最小的串扰检查晶圆表面,并且使用实验定义的 HSV 颜色空间模型,可以按类型分离颗粒。生成的图像在视觉上清晰,没有颗粒和背景之间的串扰。所提出的方法简单、快速且易于使用,并表现出良好的颗粒分类性能。因此,该方法有望用于晶圆缺陷检测步骤,增强晶圆缺陷分类过程。
Turner 等人的欧拉曲线变换 (ECT) 是嵌入单纯复形的完全不变量,易于进行统计分析。我们对 ECT 进行了推广,以提供同样方便的表示形式,用于加权单纯复形,例如在某些医学成像应用中自然出现的对象。我们利用 Ghrist 等人关于欧拉积分的工作来证明这个不变量——称为加权欧拉曲线变换 (WECT)——也是完整的。我们解释了如何将灰度图像中分割的感兴趣区域转换为加权单纯复形,然后转换为 WECT 表示。该 WECT 表示用于研究多形性胶质母细胞瘤脑肿瘤形状和纹理数据。我们表明,WECT 表示可根据定性形状和纹理特征有效地对肿瘤进行聚类,并且这种聚类与患者生存时间相关。
将相干光学跃迁与长寿命自旋量子比特耦合的固态量子发射器对于量子网络至关重要。我们在此报告了金刚石纳米结构中单个锡空位 (SnV) 中心的自旋和光学特性。通过低温磁光和自旋光谱,我们验证了 SnV 的反演对称电子结构,识别了自旋守恒和自旋翻转跃迁,表征了跃迁线宽,测量了电子自旋寿命,并评估了自旋失相时间。我们发现,即使在纳米制造结构中,光学跃迁也与辐射寿命极限一致。自旋寿命受声子限制,指数温度缩放导致 T 1 > 10 毫秒,相干时间 T 2 在冷却至 2.9 K 时达到核自旋浴极限。这些自旋特性超过了其他反演对称色心的自旋特性,而这些色心的类似值需要毫开尔文温度。 SnV 结合了相干光学跃迁和长自旋相干性,无需稀释制冷,是可行且可扩展的量子网络应用的有希望的候选者。
将相干光学跃迁与长寿命自旋量子比特耦合的固态量子发射器对于量子网络至关重要。我们在此报告了金刚石纳米结构中单个锡空位 (SnV) 中心的自旋和光学特性。通过低温磁光和自旋光谱,我们验证了 SnV 的反演对称电子结构,识别了自旋守恒和自旋翻转跃迁,表征了跃迁线宽,测量了电子自旋寿命,并评估了自旋失相时间。我们发现,即使在纳米制造结构中,光学跃迁也与辐射寿命极限一致。自旋寿命受声子限制,指数温度缩放导致 T 1 > 10 毫秒,相干时间 T 2 在冷却至 2.9 K 时达到核自旋浴极限。这些自旋特性超过了其他反演对称色心的自旋特性,而这些色心的类似值需要毫开尔文温度。 SnV 结合了相干光学跃迁和长自旋相干性,无需稀释制冷,是可行且可扩展的量子网络应用的有希望的候选者。
2021 年,目前团队的一些成员与默克公司的同事一起寻找解决方案。他们用带状电缆代替电线建造了一个可以同时进行 24 次电化学反应的反应堆。他们指出,这虽然更好,但好不了多少。这促使他们采取了一种全新的方法——用光而不是电来为类似的反应堆装置供电。结果是一种由光驱动的无线反应堆装置,能够使用几乎任何尺寸的孔板。
开发数值方法以在通用量子计算机上有效模拟非线性流体动力学是一项具有挑战性的问题。本文定义了 Madelung 变换的广义,以通过狄拉克方程解决与外部电磁力相互作用的量子相对论带电流体方程。狄拉克方程被离散化为离散时间量子游动,可在通用量子计算机上有效实现。提出了该算法的一种变体,用于在均匀外力的情况下使用当前噪声中间尺度量子 (NISQ) 设备实现模拟。使用该算法对当前 IBM NISQ 上的相对论和非相对论流体动力学冲击进行了高分辨率(高达 N = 2 17 个网格点)数值模拟。本文证明了可以在 NISQ 上模拟流体动力学,并为使用更通用的量子游动和量子自动机模拟其他流体(包括等离子体)打开了大门。
Burrows-Wheeler 变换 (BWT) 是 FM 索引不可或缺的一部分,FM 索引广泛用于文本压缩、索引、模式搜索和生物信息学问题,如从头组装和读取比对。因此,在时间和内存使用方面高效构建 BWT 是这些应用的关键。我们提出了一种称为改进桶 Burrows-Wheeler 变换 (IBB) 的新型外部算法,用于构建具有高度多样化序列长度的 DNA 数据集的 BWT。IBB 使用右对齐方法来有效处理不同长度的序列,使用基于树的数据结构来管理相对插入位置和等级,并使用精细桶来减少对外部存储器的必要输入和输出量。我们的实验表明,在大多数数据集上,IBB 比现有的最佳 BWT 构建算法快 10% 到 40%,同时保持有竞争力的内存消耗。
开发数值方法以在通用量子计算机上有效模拟非线性流体动力学是一项具有挑战性的问题。本文定义了 Madelung 变换的广义,以通过狄拉克方程解决与外部电磁力相互作用的量子相对论带电流体方程。狄拉克方程被离散化为离散时间量子游动,可在通用量子计算机上有效实现。提出了该算法的变体,以在均匀外力的情况下使用当前噪声中间尺度量子 (NISQ) 设备实现模拟。使用该算法对当前 IBM NISQ 上的相对论和非相对论流体动力学冲击进行了高分辨率(高达 N = 2 17 个网格点)数值模拟。本文证明了可以在 NISQ 上模拟流体动力学,并为使用更通用的量子游动和量子自动机模拟其他流体(包括等离子体)打开了大门。
肾细胞癌(RCC)是一种常见的泌尿外科肿瘤,预后较差,因为对化学疗法和放疗不敏感。大约20% - 30%的RCC患者在第一次诊断时具有转移,因此只能进行全身治疗。由于肾脏肿瘤的异质性,对药物的反应因人而异。因此,患者衍生的类器官,高度概括的肿瘤异质性成为了高通量外生体药物筛查的有前途的模型,因此指导了RCC患者的药物选择。全身治疗RCC主要针对肿瘤微环境,包括新生血管和免疫细胞。我们回顾了几种方法,其中使用了患者衍生的类器官模型模仿不仅肿瘤上皮的异质性,而且还模仿肿瘤微环境的异质性。我们进一步讨论了患者衍生的类器官发展的一些新方面,并保留了RCC患者的体内疾病。