摘要:本研究的目的是利用量子计算工具和方法对经典图像进行量子算法的计算机模拟,研究识别算法,并使用量子方法创建识别模型。量子建模方法可以将经典图像转换为量子态,选择边界并将灰度图像转换为二进制图像,并展示量子信息理论在解释经典问题方面的可能性。本文的主要成果是开发的允许识别对象的量子算法,以及旨在表示/处理彩色像素图像的量子方法。本文的科学新颖性体现在量子系统的构建上,解决计算 NP 完全问题的速度呈指数级增长,而经典机器可以在不可接受的时间内解决这些问题。撰写本文的动机是对量子计算及其保证的好处的浓厚兴趣。开发软件系统的理论基础以及为新信息技术和专用计算系统设计算法是一个充满活力的领域,这方面的现有工作数量就是明证。所开发的针对各类复杂度问题算法与现有的经典算法相比,效率有显著提高,并为许多复杂的数学(包括密码学)问题提供解决方案。
2 量子哈密顿量的量化和 Bravyi-Kitaev 变换 .................................................................. 10 2.1 第一和第二次量化.................................................................................................................................................... 10 2.2 Bravyi-Kitaev 变换................................................................................................................................................... 12 2.2.1 数学背景................................................................................................................................................................................... 12 2.2.2 占有数基变换................................................................................................... . . . . . . . 14 2.2.3 奇偶校验基变换 . . . . . . . . . . . . . 19 2.2.4 Bravyi-Kitaev 基变换 . . . . . . . . . . . . . 24 2.2.4.1 基编码 . . . . . . . . . . . . . . 25 2.2.4.2 奇偶校验集 . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.3 双激发算符.......................................................................................................................................................39 2.3.4 氢分子哈密顿量的完全 BK 变换 44
摘要:合成孔径雷达 (SAR) 图像由于相干采集系统的乘性斑点噪声而难以解释。因此,SAR 图像的去斑点始终是 SAR 图像处理中的首要预处理任务。有许多方法使用各种空间域滤波器和变换域算法来减少斑点,但并非所有方法都能保留图像边缘特征。本文提出了一种通过稀疏表示的去斑点算法,该算法使用具有方向选择性和平移不变性的 Shearlet 变换和 DTCW 变换的组合。实验结果表明,所提出的方法比现有的最先进方法具有更好的 PSNR、ENL 和 EPI 值。所提出的方法不仅保留了边缘,还通过增强 SAR 图像的纹理改善了视觉效果。
摘要:脑电图 (EEG) 信号包含有关大脑状态的信息,因为它们反映了大脑的功能。然而,手动解释 EEG 信号既繁琐又耗时。因此,需要使用机器学习方法提出自动 EEG 翻译模型。在本研究中,我们提出了一种创新方法,以实现高分类性能和可解释的结果。我们引入了基于通道的变换、通道模式 (ChannelPat)、t 算法和 Lobish(一种符号语言)。通过使用基于通道的变换,EEG 信号使用通道的索引进行编码。所提出的 ChannelPat 特征提取器对两个通道之间的转换进行编码,并用作基于直方图的特征提取器。采用迭代邻域分量分析 (INCA) 特征选择器来选择最具信息量的特征,并将所选特征输入到新的集成 k 最近邻 (tkNN) 分类器中。为了评估所提出的基于通道的 EEG 语言检测模型的分类能力,收集了一个包含阿拉伯语和土耳其语的新 EEG 语言数据集。此外,还引入了 Lobish,以便从所提出的 EEG 语言检测模型中获得可解释的结果。所提出的基于通道的特征工程模型被应用于收集的 EEG 语言数据集,实现了 98.59% 的分类准确率。Lobish 从大脑皮层提取有意义的信息以进行语言检测。
课程内容: 单元 1:拉普拉斯变换 [09 小时] 定义 – 存在条件;基本函数的变换;拉普拉斯变换的性质 – 线性性质、一阶移位性质、二阶移位性质、函数乘以 tn 的变换、尺度变化性质、函数除以 t 的变换、函数积分的变换、导数的变换;利用拉普拉斯变换求积分;一些特殊函数的变换 – 周期函数、海维赛德单位阶跃函数、狄拉克函数。 单元 2:逆拉普拉斯变换 [09 小时] 简介;一些基本函数的逆变换;求逆变换的一般方法;求逆拉普拉斯变换的部分分式法和卷积定理;用于求常系数线性微分方程和联立线性微分方程的解的应用 单元 3:傅里叶变换 [09 小时] 定义 – 积分变换;傅里叶积分定理(无证明);傅里叶正弦和余弦积分;傅里叶积分的复数形式;傅里叶正弦和余弦变换;傅里叶变换的性质;傅里叶变换的帕塞瓦尔恒等式。 第四单元:偏微分方程及其应用 [09 小时] 通过消除任意常数和函数形成偏微分方程;可通过直接积分解的方程;一阶线性方程(拉格朗日线性方程);变量分离法 - 用于寻找一维热流方程的解
单元I:拉普拉斯变换:某些功能的定义和拉普拉斯变换 - 转移定理;衍生物和积分的拉普拉斯转换 - 单位步骤功能 - 迪拉克的dilta函数,周期性函数。反向拉普拉斯转换-Convolution定理(无证明)。应用程序:使用拉普拉斯变换求解普通微分方程(初始值问题)。单元-II:傅立叶级数和傅立叶变换:傅立叶序列:简介,周期功能,一系列周期函数,差异和奇数函数,偶数和奇数功能,间隔的变化,半范围傅立叶正弦和余弦系列。傅立叶变换:傅立叶积分定理(无证明) - 曲线和余弦的正弦和余弦变换 - 跨性别者(文本book-i中的第22.5条) - 逆变换 - 卷积定理(没有证明)有限的傅立叶变换。
4 在量子计算机上实现酉变换和普遍性 14 4.1 量子计算机上的普遍性是什么意思?....................................................................................................14 4.2 单量子比特酉变换....................................................................................................................................15 4.3 受控酉变换....................................................................................................................................................17 4.4 如何使用一小组门近似单个量子比特的任何酉变换....................................................................................................................17 . ... . ...
II。 傅立叶变换与计算机视觉之间的联系以分析和处理图片或视频,即计算机视觉学科,这与分析和从视觉输入中分析和提取有意义的信息有关,采用了许多数学方法。 傅立叶变换是计算机视觉的主食,作为最基本的数学方法之一。 图片可以过滤,可以提取功能,可以注册图片,并且可以借助傅立叶变换和检查其频率含量的检查来识别所有图案。 图像通常通过计算机视觉算法作为二维像素值矩阵处理。 使用傅立叶变换,我们可以通过将其从空间域转换为频域来检查图像的基本频率组件。 为此,在图像矩阵的每一行和列中分别执行傅立叶变换。 图像过滤是对计算机视觉的傅立叶变换。 噪声和其他异常在数字图像中很常见,降低了图像质量并使进一步的处理更加困难。 通过对图片进行傅立叶变换,我们可以隔离关键频率以减少其影响。 当在频域中表示图像时,可以应用过滤操作,例如高通滤波器,以带出小功能和低通滤波器,以使图像平滑并减少噪声。 逆傅里叶变换用于通过将其转换回空间域来获取过滤的图片。 [7]II。傅立叶变换与计算机视觉之间的联系以分析和处理图片或视频,即计算机视觉学科,这与分析和从视觉输入中分析和提取有意义的信息有关,采用了许多数学方法。傅立叶变换是计算机视觉的主食,作为最基本的数学方法之一。图片可以过滤,可以提取功能,可以注册图片,并且可以借助傅立叶变换和检查其频率含量的检查来识别所有图案。图像通常通过计算机视觉算法作为二维像素值矩阵处理。使用傅立叶变换,我们可以通过将其从空间域转换为频域来检查图像的基本频率组件。为此,在图像矩阵的每一行和列中分别执行傅立叶变换。图像过滤是对计算机视觉的傅立叶变换。噪声和其他异常在数字图像中很常见,降低了图像质量并使进一步的处理更加困难。通过对图片进行傅立叶变换,我们可以隔离关键频率以减少其影响。当在频域中表示图像时,可以应用过滤操作,例如高通滤波器,以带出小功能和低通滤波器,以使图像平滑并减少噪声。逆傅里叶变换用于通过将其转换回空间域来获取过滤的图片。[7]