量子算法已经发展成为高效解决线性代数任务的算法。然而,它们通常需要深度电路,因此需要通用容错量子计算机。在这项工作中,我们提出了适用于有噪声的中型量子设备的线性代数任务变分算法。我们表明,线性方程组和矩阵向量乘法的解可以转化为构造的汉密尔顿量的基态。基于变分量子算法,我们引入了汉密尔顿量变形和自适应分析,以高效地找到基态,并展示了解决方案的验证。我们的算法特别适用于具有稀疏矩阵的线性代数问题,并在机器学习和优化问题中有着广泛的应用。矩阵乘法算法也可用于汉密尔顿量模拟和开放系统模拟。我们通过求解线性方程组的数值模拟来评估算法的成本和有效性。我们在 IBM 量子云设备上实现了该算法,解决方案保真度高达 99.95%。2021 中国科学出版社。由 Elsevier BV 和中国科学出版社出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
奇异价值分解对于工程和科学领域的许多问题至关重要。已经提出了几种量子算法来确定给定基质的奇异值及其相关的奇异向量。尽管这些算法是有希望的,但是在近期量子设备上,所需的量子子例程和资源太昂贵了。在这项工作中,我们提出了一种用于奇异值分解(VQSVD)的变分量子算法。通过利用奇异值的变异原理和ky fan定理,我们设计了一种新型的损失函数,以便可以训练两个量子神经网络(或参数化的量子电路)来学习奇异向量并输出相应的奇异值。更重要的是,我们对随机矩阵进行VQSVD的数值模拟以及其在手写数字的图像压缩中的应用。最后,我们讨论了算法在推荐系统和极地分解中的应用。我们的工作探讨了仅适用于Hermitian数据的量子信息处理的新途径,并揭示了矩阵分解在近期量子设备上的能力。
摘要:椎间盘 (IVD) 退化可引起慢性下腰痛 (LBP),从而导致残疾。尽管在治疗椎间盘源性 LBP 方面取得了重大进展,但当前治疗的局限性引发了人们对生物方法的兴趣,包括生长因子和干细胞注射,作为因 IVD 退化 (IVDD) 导致慢性 LBP 患者的新治疗选择。基因疗法为 IVDD 治疗带来了令人兴奋的新可能性,但治疗仍处于起步阶段。使用 PubMed 和 Google Scholar 进行文献检索,以概述 IVDD 基因治疗的原理和现状。回顾了体外和动物模型中基因向退化椎间盘细胞的转移。此外,本综述描述了 RNA 干扰 (RNAi) 基因沉默和成簇规律间隔短回文重复序列 (CRISPR) 系统基因编辑以及哺乳动物雷帕霉素靶 (mTOR) 信号在体外和动物模型中的应用。近年来重大的技术进步为新一代椎间盘内基因治疗慢性椎间盘源性腰痛打开了大门。
摘要:由于现代育种实践,全世界都担心大多数作物(例如水稻)的遗传基础可能会变窄。因此,本研究的目的是调查巴西南部优良水稻种质中的这种现象,包括杂交中常用的种质。该小组由 91 个种质组成。通过层次聚类和主成分分析分析了去壳和精米的形态性状、SNP 标记和矿物质含量数据。事实证明,SNP 标记和层次聚类最适合评估遗传变异性。水稻遗传基础变窄已得到证实,尽管在巴西南部优良水稻种质中仍发现一定程度的遗传变异性,尤其是谷物矿物质含量。关键词:遗传资源、遗传变异性、基因分型、表型、Oryza sativa L.
摘要 — 量子计算是解决传统硬件上难以计算的问题的最有前途的新兴技术之一。现有的大量研究集中在使用门级变分量子算法进行机器学习任务,例如变分量子电路 (VQC)。然而,由于参数数量有限,VQC 的灵活性和表达能力有限,例如,在一个旋转门中只能训练一个参数。另一方面,我们观察到量子脉冲在量子计算堆栈中低于量子门,并提供更多控制参数。受 VQC 良好性能的启发,本文提出了变分量子脉冲 (VQP),这是一种直接训练量子脉冲以完成学习任务的新范式。所提出的方法通过在优化框架中拉动和推动脉冲幅度来操纵变分量子脉冲。与变分量子算法类似,我们训练脉冲的框架在嘈杂的中型量子 (NISQ) 计算机上保持了对噪声的鲁棒性。在二分类示例任务中,与 qiskit 脉冲模拟器(使用来自真实机器的系统模型)和 ibmq-jarkata 上的 VQC 学习相比,VQP 学习分别实现了高达 11% 和 9% 的准确率,证明了其有效性和可行性。在存在噪声的情况下,VQP 获得可靠结果的稳定性也得到了验证。索引术语 — 变分量子电路、量子计算、量子机器学习、变分量子脉冲、量子最优控制