在儿童期发现智力和认知能力的神经相关性在许多方面可能很重要,例如预测和理解教育能力或对患者进行临床评估。即使当代实质性研究已经建立了大脑结构与一般智力之间的关系,对舌旋及其与智商的联系知之甚少。在本文中进行了研究(1)左右舌旋转的皮质厚度是否与儿童不同水平的智商相关,并且(2)如果位于舌旋流中的皮质厚度变化速率与性能IQ(PIQ)的性能变化有关。神经影像学数据源自Solé-Casals及其同事(2019年)的研究以及Suárez-Pellicioni及其同事(2019)的研究中的数据集。从OpenNeuro brain Imaging数据库下载了两个数据集。的29岁男孩的神经影像学指标用于检验以下假设:较高的智商与舌旋的较薄的皮质厚度有关。二十一个女孩和15岁以下的15岁男孩的神经影像学指标用于检查皮质厚度的变化率是否与性能智商的变化有关。结果表明,高智商与十二岁的皮质厚度有关。进一步的结果表明,舌旋中皮质的变薄速率与性能智商的变化相关。关键字:智商,皮质厚度,舌旋,生物标志物本文增加了越来越多的证据,即区域皮质厚度和皮质厚度的变化是智力的相关生物标志物。可能需要使用较大样本量和纵向设计的未来研究,并需要其他时间点才能确认本文的结果。
摘要:电穿孔动物基因敲除系统技术(TAKE)是一种简单有效的方法,利用成簇的规律间隔短回文重复序列(CRISPR)/CRISPR 相关蛋白 9(Cas9)系统生成转基因小鼠。为了增强电穿孔在小鼠基因编辑中的多功能性,针对玻璃化冷冻小鼠胚胎优化了电条件,并将其应用于广泛使用的近交系(C57BL/6NCr、BALB/cCrSlc、FVB/NJcl 和 C3H/HeJJcl)的新鲜胚胎。电脉冲设置(穿孔脉冲:电压,150 V;脉冲宽度,1.0 ms;脉冲间隔,50 ms;脉冲数,+4;转移脉冲:电压,20 V;脉冲宽度,50 ms;脉冲间隔,50 ms;脉冲数,±5)对于玻璃化冷冻加温的小鼠胚胎是最佳的,其可以有效地将 gRNA/Cas9 复合物递送到受精卵中而无需透明带变薄过程并编辑目标位点。这些电条件在广泛使用的近交系小鼠中有效地产生了转基因小鼠。此外,使用间隙为 5 mm 的电极进行电穿孔可以在 5 分钟内引入超过 100 个胚胎,而无需特殊的预处理和复杂的技术技能,例如显微注射,并且在产生的后代中表现出较高的胚胎发育率和基因组编辑效率,从而快速高效地产生基因组编辑小鼠。本研究中使用的电条件用途广泛,可以更轻松高效地生成转基因小鼠,有助于了解人类疾病和基因功能。关键词:CRISPR/Cas9、电穿孔、冻融胚胎、基因组编辑
描述和背景随着植物和树木的生长,它们在有机构成中吸收了大气二氧化碳。自然分解和森林砍伐释放该存储的碳恢复到大气中。从植物材料隔离碳中创建生物炭,以防止长时间释放回到环境中。生物炭是一种富含碳的高度稳定的土壤修正案,可改善土壤健康,并可以在土壤中存储碳的100多年。通过木材废物的转化生产生物炭可以帮助进行可持续的农业实践(增加农作物产量,减少合成肥料的使用以及改善土壤的水分)。此外,它可以帮助管理草原和牧场的木本入侵物种。东部红雪松的侵占是对内布拉斯加州大平原草原的威胁,在严重入侵的地方可以将饲料的产量减少多达75%。2019年,由于木本植物侵占,内布拉斯加州牧场损失了超过419,000吨的植物生物量饲料生产。负责任的管理和东部红雪松树的收获可以增强碳固存。可持续的实践,例如选择性收获和变薄,并利用生物炭作为改善土壤健康的土壤修正案,创造了一种综合方法。机械拆卸是一种控制红雪松但价格昂贵的方法。建立将造成的木材废物作为生物炭原料的市场将减少从牧场上取出红雪松的净支出。
摘要青春期带来了社会背景与行为,结构性大脑发育以及焦虑和抑郁症状之间的动态相互作用。腹侧前额叶皮层(VMPFC)和杏仁核的体积变化率与青春期社会情感发展有关。通常,在这段时间内,VMPFC中的灰质体积(GMV)和杏仁核的生长变薄。社会,情感和神经解剖因素之间关联的方向性尚未解决,例如社会变量影响区域大脑发展的程度,反之亦然。补充说,性别之间的差异仍在进行辩论。在这项研究中,使用潜在变化评分模型研究了同性问题,家庭支持,社会经济压力,情绪症状,情绪症状,杏仁核量和VMPFC GMV之间的纵向关联。使用了基线多站点的欧洲研究(平均(SD)年龄= 14.40(0.38)年;女性%= 53.19)和随访2(平均(SD)年龄= 18.90(0.69)年龄,%女性= 53.19)。结果表明,同伴问题没有预测情绪症状,而是随着时间的流逝而一起改变。仅针对男性,VMPFC GMV,同伴问题和情绪症状之间存在正相关的变化,这表明VMPFC GMV较慢与社交和情感功能较差有关。发现对共同的社会,情感和大脑发展以及保护心理健康的途径有了广泛的了解。此外,在14岁时的家庭支持较大,与男性14至19岁之间的杏仁核量的增长较慢有关;先前的研究已经将较慢的杏仁核增长与精神健康障碍的韧性相关。
微孢子虫肠肠肝癌(EHP)是一种与真菌相关的,形成孢子的寄生虫。EHP感染会导致虾的生长迟缓和大小变化,从而导致严重的经济损失。 对虾免疫反应的研究表明,在EHP感染后,几种抗微生物肽(AMP)上调。 在那些高度高度的放大器中是C型溶菌酶(LV LYZ-C)。 然而,负责虾中LV LYZ-C产生的免疫信号通路及其针对EHP感染的功能仍然很少了解。 在这里,我们表征了主要的虾免疫信号通路路径,并发现在EHP感染后TOLL和JAK/STAT途径被上调。 击倒JAK/STAT途径中的无效(圆顶)受体,导致LV LYZ-C显着降低,EHP拷贝数的升高。 我们通过在大肠杆菌中异源表达重组LV LYZ-C(R LV Lyz-c)进一步阐明了LV LYZ-C的功能。 r lv lyz-c表现出针对多种细菌的抗菌活性,例如枯草芽孢杆菌和弧菌副溶血性。 有趣的是,我们发现R LV LYZ-C对白色念珠菌的抗真菌活性,这使我们进一步研究了R LV Lyz-C对EHP孢子的影响。 与R lv lyz-c的EHP孢子一起孵育,然后再构成几丁质染色,表明信号以剂量依赖性的方式显着降低,这表明R LV LYZ-C可能会在EHP孢子上消化一件几丁蛋白。 我们假设EHP内孢子的变薄会导致渗透率改变,从而影响孢子发芽。EHP感染会导致虾的生长迟缓和大小变化,从而导致严重的经济损失。对虾免疫反应的研究表明,在EHP感染后,几种抗微生物肽(AMP)上调。在那些高度高度的放大器中是C型溶菌酶(LV LYZ-C)。然而,负责虾中LV LYZ-C产生的免疫信号通路及其针对EHP感染的功能仍然很少了解。在这里,我们表征了主要的虾免疫信号通路路径,并发现在EHP感染后TOLL和JAK/STAT途径被上调。击倒JAK/STAT途径中的无效(圆顶)受体,导致LV LYZ-C显着降低,EHP拷贝数的升高。我们通过在大肠杆菌中异源表达重组LV LYZ-C(R LV Lyz-c)进一步阐明了LV LYZ-C的功能。r lv lyz-c表现出针对多种细菌的抗菌活性,例如枯草芽孢杆菌和弧菌副溶血性。有趣的是,我们发现R LV LYZ-C对白色念珠菌的抗真菌活性,这使我们进一步研究了R LV Lyz-C对EHP孢子的影响。与R lv lyz-c的EHP孢子一起孵育,然后再构成几丁质染色,表明信号以剂量依赖性的方式显着降低,这表明R LV LYZ-C可能会在EHP孢子上消化一件几丁蛋白。我们假设EHP内孢子的变薄会导致渗透率改变,从而影响孢子发芽。透射电子显微镜分析表明,主要由几丁质组成的内孢子层被R LV LYZ-C消化。最后,我们观察到用R LV LYZ-C处理的EHP孢子显示孢子发芽率显着降低。这项工作提供了对负责LV LYZ-C产生及其抗EHP特性的虾免疫信号通路的见解。这些知识将作为制定EHP控制策略的重要基础。
甲状腺激素 (TH) 细胞转运蛋白单羧酸转运蛋白 8 ( MCT8 ) 基因突变的患者会出现严重的神经精神运动迟缓,即 Allan-Herndon-Dudley 综合征 (AHDS)。据推测,这是由于宫内和出生后发育阶段大脑中 TH 信号传导减少所致,治疗仍然具有挑战性,这是可以理解的。鉴于大脑 TH 转运蛋白的物种差异以及小鼠研究的局限性,我们使用来自 MCT8 缺陷患者的人类诱导多能干细胞 (iPSC) 生成了大脑类器官 (CO)。 MCT8 缺陷型 CO 表现出 (i) 早期神经发育改变,导致神经丛变小,皮质单元变薄,(ii) 发育中的神经细胞中三碘甲状腺原氨酸 (T3) 转运受损,通过脱碘酶 3 介导的 T3 分解代谢评估,(iii) 大脑皮层发育相关基因表达减少,以及 (iv) TH 调节基因的 T3 诱导性降低。相反,TH 类似物 3,5-二碘甲状腺丙酸和 3,3′,5-三碘甲状腺乙酸在 MCT8 缺陷型 CO 中引发正常反应(诱导/抑制 T3 反应基因),这证明 T3 转运缺乏是 AHDS 病理生理学的基础,并展示了 TH 类似物用于治疗 AHDS 患者的临床潜力。 MCT8 缺陷型 CO 代表一种物种特异性相关临床前模型,可用于筛选对 AHDS 患者有潜在益处的药物,作为个性化治疗。
重大技术进步依赖于对电荷和自旋的控制和利用——这是电子的两个基本特性。最近,人们对磁振子学领域的兴趣日益浓厚,该领域试图了解由于自旋或磁振子的集体振荡而形成的模式的物理原理。利用磁振子提供了额外的最小化损失的范围,因为不需要传输电子。在 TIFR 纳米电子学小组最近的一项研究中,在具有范德华层状晶体结构的反铁磁材料中观察到驻自旋波模式。当微波频率的电磁信号在磁场存在下与反铁磁体中的磁矩相互作用时,这些模式被激发。这项研究呈现出一个令人兴奋的前景,因为它是范德华材料中驻自旋波的首次观察。该团队研究的材料三氯化铬 (CrCl 3 ) 属于三卤化铬家族,该家族也是首次报道在 2D 极限下(即当晶体变薄至单个原子厚度时)表现出磁性的材料之一。由于这些材料具有层状可裂结构,因此有可能用于现代电子设备的小型化。虽然在接近 THz 频率的其他反铁磁体中也发现了驻自旋波模式,但在本研究中,该团队在低 GHz 微波频率下激发了驻自旋波模式,该频率通常用于通信和量子信息相关研究。这项研究于 2020 年 11 月 27 日在线发表在《先进材料》杂志上。
LeadFrame软件包。抽象的带状经线是模制的LeadFrame软件包中的一个常见问题。当经形过多时,无法处理条带,因为它会导致加载过程中的条带卡住或损坏,以处理机器装载机。有许多因素影响模制的铅框带的翘曲。这项研究重点介绍了模具盖厚度对模制Quad Flat No Lead(QFN)封装的脱带经穿的影响。使用有限元分析(FEA)在建模中考虑了不同的模具厚度值。结果表明,有最佳的霉菌厚度可产生最低的条带经形。在霉菌厚度低于最佳值时,翘曲处于皱眉模式,并且随着包装变薄而增加。最佳值也取决于铅框的厚度。最佳的霉菌盖厚度较低,用于较薄的铅框架。这项研究表明,霉菌盖的厚度对模制条纹具有重大影响。关键字:带状扭曲; LeadFrame Strip;霉菌厚度;模制包装;经线建模。1。引言半导体套件通常以条纹格式模制,然后将其唱歌到单个单元中。但是,由于在环氧成型化合物,Leadframe和Silicon Die的每个包装材料的热膨胀系数(CTE)中不匹配,因此脱带经态发生。包装组装制造过程中不同材料的膨胀速率的差异导致经扭曲。脱衣轮经过过多的问题,并且脱衣处理将很困难。图1显示了一个模制的铅框带包装,该套件具有过多的条带经形。
在内华达山脉的加利福尼亚州美国河流域恢复了弹性的森林结构,可通过增加的森林碳和易于市场的生物量利用途径来产生每英亩6,100美元的碳收入,这可能会完全资助森林管理。采用动态性能基准(DPB)框架,本研究通过森林变薄,然后是开处方的火灾对恢复对高风险森林的韧性的影响。这些做法显示出初始的碳成本,但最终减少了野火的碳排放量并增加了碳存储,与无治疗的反事实情况相比,平均每英亩35 TCO 2 E的碳排放量增加了35 TCO 2 E,而市场就绪的生物量利用途径增加了另外6-23 TCO 2 E平均每英亩平均收益。治疗方法通过将碳存储从茂密,人满为患的小树转移到更多分散的,耐火的大树并使火灾后的火力严重程度(火焰长度)降低78%五年后,可以增强碳稳定性。与预处理水平相比,治疗使景观中的树木数量减少了74%,而在25年模拟结束时,碳存储量增加了6%。为了将投资者的风险降低到基于自然的解决方案中,重点是提高火灾森林中的碳稳定性并从燃料处理中产生碳收入,需要准确的预测工具。为了最大程度地确定碳效益,景观水平处理,DPB和前碳信贷的确定性至关重要。本研究表明,传统市场或新颖的碳贡献计划的碳收入可以帮助缩小加利福尼亚州森林修复的资金差距,同时强调需要创新的保护融资机制来支持生态系统的弹性和气候缓解目标。
摘要:近年来,由于清洁、绿色和可持续的电动汽车的出现,人们对电池电动汽车 (BEV) 和燃料电池电动汽车 (FCEV) 的需求巨大,它们可以替代传统的燃料驱动汽车。与 BEV 相比,FCEV 具有几个优势,例如成本更低、效率更高、操作简单,最重要的是能量密度更高。质子交换膜燃料电池 (PEMFC) 是 FCEV 中首选的燃料电池类型。过去几年,由于可再生能源水电解槽的诸多发展,绿色氢气产量大幅增加,低温质子交换膜燃料电池的需求量更大。燃料电池组件成本高(双极板、电催化剂和膜)、耐用性差、功率密度低,FCEV 的全球商业化仍然受到阻碍。幸运的是,由于纳米材料开发(非 PGM 电催化剂和非 Nafion 基膜)的重大进展,组件成本正在下降。尽管有这些发展,但在 PEMFC 的工作环境下,材料(膜、电催化剂和双极板)的降解是非常常见和自然的。质子交换膜 (PEM) 是 PEMFC 的核心组件之一,在分离两个电极(即阳极和阴极)、仅允许质子通过和限制燃料交叉方面起着关键作用。不幸的是,PEM 很容易降解,导致燃料交叉、不良反应和混合电位,从而降低 PEMFC 的功率和能量密度,导致行驶里程差和效率降低。膜变薄、针孔形成、聚合物主链分离和过氧化物自由基攻击是导致膜降解和影响 PEMFC 性能的一些因素。因此,对于目前提出的工作,我们的主要目标是确定 PEMFC 下原位和异位条件下的膜降解及其缓解方法。我们提出的工作的最终目标是实现用于电力应用的低温 PEMFC 的稳定且高质子导电膜。
