的发酵食品的安全性和改善的安全性,需要通过采用分子技术来隔离野生菌株的菌株,并将其鉴定到物种水平上。这些乳酸菌株用作食物发酵中的功能开胃培养物(Okorie等人2013,Owusu-Kwarteng等。 2015)。 最近,乳酸细菌一直是研究的重点,因为它们在食品发酵,保存,益生菌和功能性食品中强调了重要性。 木薯块茎可以加工成Fufu和Garri等各种非洲主食。 它仅涉及将根浸入水中,直到它们变软或擦洗。 但是,在发酵的最佳条件下,这大约需要三到四天(Ogbo 2013)。 已经发现不同的微生物在发酵过程中发挥重要作用。 在尼日利亚东南部,OGI也称为PAP是一种常规的发酵食品,构成了主要的主食和断奶食品。 它是由玉米,几内亚玉米或高粱制成的。 S。cerevisiae,L。plantarum,肠杆菌和其他乳酸细菌已从发酵的OGI中连续分离(Egwim等人。 2013)。 目前的研究旨在使用保守的和分子策略来隔离和表征乳酸细菌与乳酸发酵食品。 分离株可以用作功能性粮食生产中的起动培养物。2013,Owusu-Kwarteng等。2015)。最近,乳酸细菌一直是研究的重点,因为它们在食品发酵,保存,益生菌和功能性食品中强调了重要性。木薯块茎可以加工成Fufu和Garri等各种非洲主食。它仅涉及将根浸入水中,直到它们变软或擦洗。但是,在发酵的最佳条件下,这大约需要三到四天(Ogbo 2013)。已经发现不同的微生物在发酵过程中发挥重要作用。在尼日利亚东南部,OGI也称为PAP是一种常规的发酵食品,构成了主要的主食和断奶食品。它是由玉米,几内亚玉米或高粱制成的。S。cerevisiae,L。plantarum,肠杆菌和其他乳酸细菌已从发酵的OGI中连续分离(Egwim等人。2013)。目前的研究旨在使用保守的和分子策略来隔离和表征乳酸细菌与乳酸发酵食品。分离株可以用作功能性粮食生产中的起动培养物。
这项研究展示了暗场 X 射线显微镜 (DFXM)(一种纳米结构的 3D 成像技术)在表征 GaN/AlN/Si/SiO 2 纳米柱顶部的新型氮化镓 (GaN) 外延结构以用于光电应用方面的潜力。纳米柱旨在使独立的 GaN 纳米结构聚结成高度取向的薄膜,因为 SiO 2 层在 GaN 生长温度下变软。在纳米级的不同类型的样品上展示了 DFXM,结果表明,通过这种生长方法可以实现取向极好的 GaN 线(标准偏差为 0.04)以及面积高达 10 10 平方毫米的区域的高度取向材料。在宏观尺度上,高强度 X 射线衍射表明 GaN 金字塔的聚结会导致纳米柱中硅的方向错误,这意味着生长按预期进行(即柱在聚结过程中旋转)。这两种衍射方法证明了这种生长方法对于微型显示器和微型 LED 的巨大前景,这些显示器和 LED 需要小岛状的高质量 GaN 材料,并提供了一种新方法来丰富对最高空间分辨率下光电相关材料的基本理解。
易于拆卸和可重复使用的粘合剂作为一次性粘合剂的替代品具有吸引力,可减少浪费并促进再利用,回收或什至升级选项。木质素是纸 - 羽状产业的第二大聚合物和副产品,用于设计一种新颖的,高度可调的可逆聚合物粘合剂。采用的方法是利用P-羟基霉素酸在这项工作中使用木质素氧化化合物合成的P-羟基霉素酸结构的α,β-不饱和酯部分的光子响应特性,并使用木质素氧化化合物合成并修饰以可耐可可逆的粘附切换。可逆性是通过紫外线的暴露来实现的,紫外线裂解最初由酯的α,β-不饱和键形成的共价环丁烷环,从而使材料变软并易于分离。可以通过弹性链接以提供重新功能来再次建立原始聚合物结构。引入了实验方法(DOE)方法的设计,以优化重要变量,以实现粘合剂的最佳剪切强度。各种结构方面的效果显示了满足财产要求的结构的高可调节性。可再生资源的聚合物粘合剂的设计策略,以及本工作中描述的结构 - 属性分析机制,可以实施以设计基于生物的新型和可重复使用的粘合剂。
乳果糖是一种合成的二糖,由半乳糖和果糖通过 β-1,4-糖苷键连接而成。它是天然乳糖乳糖的异构化产物,乳糖是乳果糖生产的起始物质。由于乳果糖不能在小肠中被酶分解,因此完整的分子到达大肠后被结肠细菌代谢为相应的单糖,然后代谢为短链脂肪酸 (SCFA)、氢和甲烷 [5-7]。乳果糖的天然通便作用主要源于其渗透能力,可导致水分滞留,从而使粪便变软,并具有蠕动激活作用。此外,难消化的二糖在结肠中的代谢会导致腔内气体形成和渗透压增加,同时降低腔内 pH 值,从而缩短肠道转运时间 [1,8]。乳果糖还能有效减少肠道氨的产生,因此可用于预防和治疗肝性脑病 (HE) [5,6]。乳果糖的代谢作用似乎与剂量有关 [6]。虽然较低剂量(2 克/天以上)就能产生益生元作用并增强钙和镁等多种矿物质的吸收,但 10-30 克/天的中等剂量会产生用于治疗便秘的通便作用,而 60-100 克/天的高剂量则具有用于治疗 HE 的解毒作用 [5,6,9]。
食谱:烘焙苹果 (9 人份) 配料: • 饼皮: o 3/4 杯通用面粉 o 1/2 杯全麦面粉 o 2 汤匙糖粉 o 2 汤匙软化黄油或人造黄油 o 4 汤匙菜籽油 • 馅料: o 2 个大 Gala 或 Fuji 苹果,削皮、去核并切成大小合适的块 o 2 个大 Granny Smith 苹果,削皮、去核并切成大小合适的块 o 1-1/2 杯苹果酒,分开 o 2 汤匙玉米淀粉 o 1/2 茶匙肉桂 o 1/8 茶匙肉豆蔻 o 2 汤匙红糖 o 少许盐 o 1/4 杯苹果酱(不加糖) o 1/2 杯低脂格兰诺拉麦片 制作方法: 1. 将烤箱预热至 375°F。在中号碗中,混合干燥的饼皮成分。加入人造黄油和菜籽油,直至混合物完全混合。将饼皮混合物压入 8x8 或 9x9 英寸方形烤盘底部。烘烤 15 分钟。从烤箱中取出并放在一边冷却。2. 将烤箱温度降低至 325°F。准备馅料:在中火上将平底锅放入 1 杯苹果酒中煮苹果 5 分钟或直到变软。将玉米淀粉和剩下的 1/2 杯苹果酒在小碗中混合。加入正在煮的苹果中,不断搅拌,直至混合物变稠且玉米淀粉完全煮熟。加入肉桂、肉豆蔻、糖和盐。放在一边。3. 用勺子背面或抹刀将苹果酱涂抹在准备好的饼皮上。上面放上煮熟的苹果混合物。撒上格兰诺拉麦片。烘烤 20-30 分钟或直到热气腾腾
HISAR,125004,印度哈里亚纳邦。摘要 - 在过去的20年中,服装和纺织工业经历了一些有趣的发展。在此概述中描述了各种纺织品饰面技术。先进的纺织品饰面技术可能包括使用纳米涂层,使用水解硅胶,酶,微囊化的表面修饰以及使用纳米涂层和纳米粘膜加强的表面修饰。传统的饰面方法,例如湿和干精加工技术,仍用于棉花和羊毛织物。这些技术将各种纹理和性能质量赋予纺织品材料,从而将其转变为未来的纺织品。没有这些技术,“未来派”的纺织品,例如服装和服装,以及对环境和人体变化做出良好反应的技术纺织品。关键词:完成,创新,技术,纺织品。1。引言任何类型的编织,编织,打结(如在麦克拉米中),簇状或非编织的织物都是纺织品(用纤维制成的布'已将其粘合到织物中,例如感觉)。短语“纺织品饰面”是指生产后在织物上执行的机械和化学程序,但在将其切成衣服或其他物品之前。使用纺织品饰面来产生预期的结果可能是出于美学或实际原因。取决于预期的应用程序,完成程序可能会改变布的外观,使其变软或增强其性能的某些方面。无论使用哪种方法,纺织品饰面都会提高布的消费者吸引力。服装通过整理过程(例如服装湿加工)和添加的结果脱颖而出,这是一个独特的卖点。尽管服装精加工可能应用于各种服装类型,包括衬衫,裤子和T恤,但大部分效果在牛仔布和休闲穿着市场中最受欢迎。在纺织品制造业的背景下进行饰演,是指在染色纱或织物后进行的任何操作,以增强成品纺织品或服装的外观,功能或“手”(感觉)(感觉)。它也可以参考任何将编织或针织布变成可用织物或其他材料的操作。在纱线编织之前,在纱线上使用了某些修饰方法,例如漂白和染色,而其他方法在编织或编织后立即将其用于灰色织物上。其他人,例如默默化,是工业革命的后果,而某些饰面(如装满)已被用来写成几代人的手工编织。特殊的天然纤维饰面酶用于生物抛光中,以去除织物的投射纤维。突出的纤维优先通过酶(例如棉花纤维素酶)去除。可以升高温度以停用这些酶。Mercerization提高了编织棉织物的光泽和强度以及对颜色和耐磨性的亲和力。与绒布一样,提高了表面纤维以增加柔软度和温暖。这种独特的抛光剂经常应用于服装。桃子饰面使用emery车轮在织物上提供类似天鹅绒的饰面(棉花或其合成混合物)。羊毛织物可以变稠,从而使其通过填充或擦拭来使其更具防水性。脱氨酸提供羊毛材料尺寸稳定性。织物的抗微生物治疗可防止细菌在其上生长。在纺织纤维中存在的温暖,潮湿的环境中,微生物更快地增殖。如果织物与皮肤相邻,微生物侵染可能会导致病原体和气味产生的交叉感染。此外,污渍和纺织底物纤维质量的下降是可能的。合成纤维合成纺织品的特殊饰面可能是热设置的,以消除制造过程中产生的内部纤维张力,并且可以通过快速冷却来固定新的条件。可以在其放松状态下永久掺入材料中,从而消除了未来的收缩或折痕。预装产品对染色