摘要 - 本文提出了一种瞬态稳定性约束最佳功率流(TSCOPF)公式,该公式对配备了合成惯性的非同步可再生能源产生建模。提出的优化问题计算了系统的最佳工作点,可容纳非同步可再生生成的高股票,同时确保在发生重大事件的情况下进行瞬时稳定性。合成惯性控制器用于在可再生生成份额很高的情况下提高系统的动态稳定性。提出的工具在西北西班牙系统中进行了测试,西班牙西北系统具有较高的风能渗透率,导致总系统惯性减少。研究结果表明,1)可再生电厂中的合成惯性可以减少严重的意外情况后的机电振荡,从而降低了确保瞬时稳定性的成本; 2)使用合成惯性,当脱碳和可再生促进策略退役时,系统会变得更加稳定; 3)所提出的模型可用于计算合成惯性控制的参数。
变速杆是驾驶员和传动系统之间的人机界面 (HMI)。通过移动变速杆,可以选择档位。无论变速箱类型如何,在电动汽车中,都需要变速杆检测来定义驾驶模式 (PNRD)、打开倒车灯或启动后视摄像头。如今的系统采用线控换挡方法,变速杆和变速箱之间没有机械连接。驾驶状态通过电子控制改变,因此必须采用传感解决方案来检测变速杆的每个位置。
可编程的光子集成电路正在成为量子信息处理和人工神经网络等应用的有吸引力的平台。但是,由于商业铸造厂缺乏低功率和低损耗相变的速度,当前可编程电路的尺度能力受到限制。在这里,我们在硅光子铸造厂平台(IMEC的ISIPP50G)上演示了具有低功率光子微电体系统(MEMS)的紧凑相位变速器。该设备在1550 nm处达到(2.9π±π)相移,插入损耗为(0.33 + 0.15 - 0.10)dB,AVπ为(10.7 + 2.2 - 1.4)V,和(17.2 + 8.8-4.3)的Lπ。我们还测量了空气中1.03 MHz的致动带f -3 dB。我们认为,我们对硅光子铸造型兼容技术实现的低损坏和低功率光子磁化相位变速杆的证明将主要的障碍提升到可编程光子集成电路的规模上。©2021美国光学协会根据OSA开放访问出版协议的条款
我们已经研究了垂直磁性共振(FMR)辅助自旋转移扭矩(STT)垂直MTJ(P-MTJ)的辅助旋转转移扭矩(STT)切换,并使用微磁模拟使用包括热噪声效应的微磁模拟使用不均匀性。具有适当的频率激发,锯可以在磁刻录材料中诱导铁磁共振,并且磁化强度可以在圆锥体中进攻,从垂直方向高挠度。随着通过侧向各向异性变化以及室温热噪声掺入不均匀性的情况下,不同增长的磁化进攻可能显着不合同。有趣的是,即使在不同各向异性的晶粒之间,不同晶粒的进动物也处于相位状态。然而,由于声感应的FMR引起的高平均挠度角可以通过显着降低STT电流来补充STT开关。即使施加的应力诱导的各向异性变化远低于总各向异性屏障。这项工作表明,锯诱导的FMR辅助开关可以提高能源效率,同时可扩展到非常小的尺寸,这对于STT-RAM在技术上很重要,并阐明了这种范式在具有热噪声和材料不显着性的现实情况下这种范式在现实情况下的潜在鲁棒性的物理机制。
专家工程师可以正确判断各种 AT 模型的换挡质量。如果 CSQ-SDL 创建的分类器可以像工程师一样正确判断其他未用于学习的 AT 模型的换挡质量,那么从实际角度来看,这将是很有趣的。为了回答这个问题,在第二项研究中,我们研究了 CSQ-SDL 为给定的 AT 模型 A 创建的分类器相对于其他模型的多功能性。其他模型是具有类似硬件的 AT 模型 B 和没有类似硬件的 AT 模型 C。事实证明,在 B 的情况下没有发现明显的恶化,而在 C 的情况下发现了明显的恶化。在第三项研究中,我们进行了另一项实验,使用自动编码器测量 AT 模型 A、B 和 C 的相似性,并表明如果有足够的数据,它会识别出 B 和 A 相似,而 C 和 A 不相似。
重要通知:任何除 ACORE 之外的一方审阅或使用本报告即表示接受以下条款。它们构成您和 ICF 之间具有约束力的协议。通过审阅或使用本报告,您特此同意以下条款。除整体使用和与本免责声明结合使用外,禁止以任何方式使用本报告。不得全部或部分复制本报告或分发给任何人。本报告及其中的信息和声明全部或部分基于从各种来源获得的信息。ICF 不保证任何此类信息或基于此得出的任何结论的准确性。ICF 对印刷、图片或其他编辑错误不承担任何责任。报告按“原样”提供。 ICF 不就本报告提供或作出任何明示或暗示的保证,包括适销性和针对特定用途的适用性的暗示保证。您使用本报告的风险由您自行承担。ICF 对您因使用本报告而造成的任何损害概不负责。
在接受肠胃外营养的患者中很少需要VRIII液体,因为它们通常已经在肠胃外营养中开了大量的液体和葡萄糖(底物)。如果认为需要额外的流体量,请直接向当地营养支持团队寻求紧急建议。该团队可以选择相应地调整肠胃外营养处方(如果指示的话)而不是开始VRIII II液体,因为有真正的风险使这些患者具有双重静脉液体方式。目的是在安全和可行的可行性上尽快使患者脱离VRIII。一旦血糖稳定并建立了进食,应将患者转化为皮下胰岛素注射或口服降糖。这可能非常具有挑战性,如果血糖控制存在问题,请寻求糖尿病小组的及时投入。
摘要 近年来,电力推进系统在船舶工业中的应用越来越广泛。螺旋桨的控制一直是该行业优先考虑的设计挑战。螺旋桨控制的关键问题之一是船舶的速度控制。合适的螺旋桨控制策略应具有经济效益,同时确保船舶电力系统的稳定性、可靠性和电能质量。本文提出了一种改进的螺旋桨控制策略来提高/降低船舶速度。该方案包括两种策略:最大加速度策略和高效运行策略。最大加速度策略旨在快速达到最终速度设定值。另一方面,高效运行策略被认为可以提高船舶电力系统的可靠性和电能质量,并且加速度略高于传统方法。此外,还采用机械指标来比较各种变速策略的性能。利用该指标(即寿命损失 (LoL)),分析了变速操作对螺旋桨轴疲劳的影响,并讨论了所提方法在提高螺旋桨寿命方面的优势。模拟表明,采用所提出的变速方案可将螺旋桨机械磨损降低至传统方法的约 1.8%,从而延长其寿命。
随着世界各地的第五代(5G)网络的引入,已经发布了几个MM波频段供商业用途。与第四代(4G)中使用的相比,这些频段提供更宽的带宽并增加空间重复使用。 此外,改进的孔径与波长比允许在降低的外形尺寸中实现相位的阵列天线系统(PHAA)[1]。 所有这些方面都将有助于满足不断增加的数据吞吐量所设想的需求。 特别是,分阶段阵列允许将波聚焦在非常狭窄的光束中。 光束可以通过控制单相移位来以电子方式进行电导。 这些系统的瓶颈是提供精确相移的困难。 因此,目前非常感兴趣的精确相位变速器,具有低消耗,足够的面积职业和相关收益的设计。 文献中已经提出了几种设计,并且它们以不同的方式实施。但是,主要区别在于被动和主动的区别。 被动相位变速器[2] - [4]在高插入损失和开销面积的费用下实现高线性。 相反,活跃的线性具有较低的线性[5] - [9],但是,紧凑型解决方案,低损耗(或增益)的可能性以及可以用于振幅锥度[10]的增益调整,使后者最喜欢的候选者用于MM-Wave Phaas。 在本文中,介绍了IHP BICMOS技术制造的两个主动相位变速器的设计,一种旨在高增益,另一种用于低区域职业。相比,这些频段提供更宽的带宽并增加空间重复使用。此外,改进的孔径与波长比允许在降低的外形尺寸中实现相位的阵列天线系统(PHAA)[1]。所有这些方面都将有助于满足不断增加的数据吞吐量所设想的需求。特别是,分阶段阵列允许将波聚焦在非常狭窄的光束中。光束可以通过控制单相移位来以电子方式进行电导。这些系统的瓶颈是提供精确相移的困难。因此,目前非常感兴趣的精确相位变速器,具有低消耗,足够的面积职业和相关收益的设计。文献中已经提出了几种设计,并且它们以不同的方式实施。但是,主要区别在于被动和主动的区别。被动相位变速器[2] - [4]在高插入损失和开销面积的费用下实现高线性。相反,活跃的线性具有较低的线性[5] - [9],但是,紧凑型解决方案,低损耗(或增益)的可能性以及可以用于振幅锥度[10]的增益调整,使后者最喜欢的候选者用于MM-Wave Phaas。在本文中,介绍了IHP BICMOS技术制造的两个主动相位变速器的设计,一种旨在高增益,另一种用于低区域职业。本文的其余部分如下组织。第二节描述了两个VM的架构。第三节分析了这两种设计。第四节对测量结果的评论,第五节总结了本文。
警告:• 这些说明旨在帮助合格的持证维修人员正确安装、调整和操作本设备。在尝试安装或操作之前,请仔细阅读这些说明。未遵循这些说明可能会导致不正确的安装、调整、维修或维护,从而导致火灾、触电、财产损失、人身伤害或死亡。• 设备必须永久接地。否则可能会导致触电,从而导致严重的人身伤害或死亡。• 在进行任何电气连接之前,请关闭保险丝盒或服务面板的电源。• 在进行线电压连接之前,请完成接地连接。否则可能会导致触电、严重的人身伤害或死亡。• 在开始维护之前,请断开设备的所有电源。否则可能会导致触电,从而导致严重的人身伤害或死亡。• 切勿假设设备已正确接线和/或接地。在拆除检修面板或接触设备柜之前,请务必使用大多数电气供应商或家庭中心提供的非接触式电压检测器测试设备柜。 • 请勿使用氧气吹扫管线或加压系统进行泄漏测试。氧气与油剧烈反应,可能引起爆炸,导致严重的人身伤害或死亡。 • 涡旋压缩机外壳顶部很热。触摸压缩机顶部可能会引起