线性稳压器的基本结构、优点和缺点;基本 DC-DC 转换器(降压、升压、降压-升压)的稳态分析;衍生 DC-DC(Cuk、SEPIC、二次)转换器的稳态分析。变压器隔离 DC-DC 转换器(正向、反激、推挽、桥式)的稳态分析;开关模式稳压器规格、框图、建模方法、假设和近似值。CCM 和 DCM 模式下硬开关转换器的动态模型和传递函数。稳压器设计示例:电流编程转换器、框图、稳定性、建模和传递函数。单相 PFC 电路。谐振转换器,软开关原理:ZVS、ZCS、ZVZCS 谐振负载转换器:变频串联和并联谐振转换器(谐振开关转换器(准谐振):半波和全波操作和控制。谐振过渡相位调制转换器,降低 VA 额定值,固定频率操作以及设备和变压器非理想性的有利用途;软开关双向 DC-DC 转换器(双有源桥):在降压模式和升压模式下进行软开关,带或不带有源钳位 PWM 转换器(带辅助开关)、ZVT/ZCT PWM 转换器:带辅助开关的隔离和非隔离拓扑;辅助谐振换向极逆变器:用于逆变器的 ZVT 和 ZCT 概念;谐振直流链路逆变器:通过辅助开关强制振荡直流链路电压。先决条件:无
乔治·史汀生十几岁时还是一名业余无线电爱好者,他开始对无线电波着迷,并设计和制造了发射器和接收器。他第一次接触雷达是在第二次世界大战初期,当时他在斯坦福大学超高频实验室外的实验间隙测量海军飞艇的回波。获得电气工程学士学位后,他在加州理工学院学习了一些额外的课程,在鲍登学院和麻省理工学院的海军雷达学校学习,最后成为攻击运输机上的电子军官。战后,他担任南加州爱迪生变频项目的工程师,并在项目完成后加入了诺斯罗普的斯纳克导弹项目。在那里,他偶然涉足技术出版物和电影。1951 年,他被休斯飞机公司聘用,负责撰写一本广为流传的技术期刊《雷达拦截器》。在随后的几年里,他与公司的顶级设计师密切合作,亲眼目睹了机载雷达从第一批全天候拦截器的简单系统到当今先进的脉冲多普勒系统的迷人演变。他见证了第一枚雷达制导空对空导弹的发展、数字计算机首次融入小型机载雷达、激光雷达、SAR 和可编程数字信号处理器的诞生;他还看到了机载雷达技术向太空应用的扩展。1990 年退休后,他仍然活跃在该领域,在莫哈韦国家试飞员学校教授现代雷达短期课程,撰写有关休斯天线辐射图和 RCS 测量设施的技术手册,制作有关新型 HYSAR 雷达的全程叙述交互式多媒体演示,并为 1998 年版《美国百科全书》撰写有关雷达的文章。
测试方法 方法编号环境测试 1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.10 稳态寿命 1006 间歇寿命 1007.1 约定寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.9 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.15 密封 1015.11 老化测试 1016.2 寿命/可靠性特性测试 1017.3 中子辐照 1018.7 内部气体分析 1019.9 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序1021.3 数字微电路的剂量率翻转测试 1022 场效应晶体管 (Mosfet) 阈值电压 1023.3 线性微电路的剂量率响应 1030.2 封装前老化 1031 薄膜腐蚀测试 1032.1 封装引起的软错误测试程序(由阿尔法粒子引起) 1033 耐久性测试 1034.2 芯片渗透测试(针对塑料设备) 机械测试 2001.4 恒定加速度 2002.5 机械冲击 2003.12 可焊性 2004.7 引线完整性 2005.2 振动疲劳 2006.1 振动噪声 2007.3 振动,变频 2008.1 视觉和机械 2009.12 外部视觉 2010.14 内部视觉(单片) 2011.9 键合强度(破坏性键拉力试验) 2012.9 射线照相术 2013.1 DPA 内部目视检查 2014 内部视觉和机械 2015.14 耐溶剂性 2016 物理尺寸 2017.11 内部视觉(混合) 2018.6 金属化扫描电子显微镜 (SEM) 检查 2019.9 芯片剪切强度 2020.9 粒子撞击噪音检测测试
测试方法 方法编号环境测试 1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.9 稳态寿命 1006 间歇寿命 1007.1 约定寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.8 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.14 密封 1015.10 老化测试 1016.2 寿命/可靠性特性测试 1017.3 中子辐照 1018.7 内部气体分析 1019.9 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序1021.3 数字微电路的剂量率翻转测试 1022 场效应晶体管 (Mosfet) 阈值电压 1023.3 线性微电路的剂量率响应 1030.2 封装前老化 1031 薄膜腐蚀测试 1032.1 封装引起的软错误测试程序(由阿尔法粒子引起) 1033 耐久性测试 1034.1 芯片渗透测试(针对塑料设备) 机械测试 2001.3 恒定加速度 2002.5 机械冲击 2003.11 可焊性 2004.7 引线完整性 2005.2 振动疲劳 2006.1 振动噪声 2007.3 振动,变频 2008.1 视觉和机械 2009.11 外部视觉 2010.14 内部视觉(单片) 2011.9 键合强度(破坏性键拉力试验) 2012.9 射线照相术 2013.1 DPA 内部目视检查 2014 内部目视和机械 2015.14 耐溶剂性 2016 物理尺寸 2017.10 内部目视(混合) 2018.6 金属化扫描电子显微镜 (SEM) 检查 2019.9 芯片剪切强度 2020.9 粒子撞击噪音检测测试
测试方法 方法编号环境测试 1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.10 稳态寿命 1006 间歇寿命 1007.1 约定寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.9 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.15 密封 1015.11 老化测试 1016.2 寿命/可靠性特性测试 1017.3 中子辐照 1018.7 内部气体分析 1019.9 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序1021.3 数字微电路的剂量率翻转测试 1022 场效应晶体管 (Mosfet) 阈值电压 1023.3 线性微电路的剂量率响应 1030.2 封装前老化 1031 薄膜腐蚀测试 1032.1 封装引起的软错误测试程序(由阿尔法粒子引起) 1033 耐久性测试 1034.2 芯片渗透测试(针对塑料设备) 机械测试 2001.4 恒定加速度 2002.5 机械冲击 2003.12 可焊性 2004.7 引线完整性 2005.2 振动疲劳 2006.1 振动噪声 2007.3 振动,变频 2008.1 视觉和机械 2009.12 外部视觉 2010.14 内部视觉(单片) 2011.9 键合强度(破坏性键拉力试验) 2012.9 射线照相术 2013.1 DPA 内部目视检查 2014 内部目视和机械 2015.14 耐溶剂性 2016 物理尺寸 2017.11 内部目视(混合) 2018.6 金属化扫描电子显微镜 (SEM) 检查 2019.9 芯片剪切强度 2020.9 粒子撞击噪音检测测试
测试方法方法编号环境测试 1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.10 稳态寿命 1006 间歇寿命 1007.1 约定寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.9 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.15 密封 1015.11 老化测试 1016.2 寿命/可靠性特性测试 1017.3 中子辐照 1018.7 内部气体分析 1019.9 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序 1021.3数字微电路的剂量率翻转测试 1022 场效应晶体管 (Mosfet) 阈值电压 1023.3 线性微电路的剂量率响应 1030.2 封装前老化 1031 薄膜腐蚀测试 1032.1 封装诱发的软错误测试程序(由阿尔法粒子引起) 1033 耐久性测试 1034.2 芯片渗透测试(针对塑料设备) 机械测试 2001.4 恒定加速度 2002.5 机械冲击 2003.12 可焊性 2004.7 引线完整性 2005.2 振动疲劳 2006.1 振动噪声 2007.3 振动,变频 2008.1 视觉和机械 2009.12 外部视觉 2010.14 内部视觉(单片) 2011.9 键合强度(破坏性键合拉力测试) 2012.9 射线照相 2013.1 DPA 内部目视检查 2014 内部目视和机械 2015.14 耐溶剂性 2016 物理尺寸 2017.11 内部目视(混合) 2018.6 金属化扫描电子显微镜 (SEM) 检查 2019.9 芯片剪切强度 2020.9 粒子撞击噪音检测测试
测试方法方法编号环境测试 1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.10 稳态寿命 1006 间歇寿命 1007.1 约定寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.9 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.15 密封 1015.11 老化测试 1016.2 寿命/可靠性特性测试 1017.3 中子辐照 1018.7 内部气体分析 1019.9 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序 1021.3数字微电路的剂量率翻转测试 1022 场效应晶体管 (Mosfet) 阈值电压 1023.3 线性微电路的剂量率响应 1030.2 封装前老化 1031 薄膜腐蚀测试 1032.1 封装诱发的软错误测试程序(由阿尔法粒子引起) 1033 耐久性测试 1034.2 芯片渗透测试(针对塑料设备) 机械测试 2001.4 恒定加速度 2002.5 机械冲击 2003.12 可焊性 2004.7 引线完整性 2005.2 振动疲劳 2006.1 振动噪声 2007.3 振动,变频 2008.1 视觉和机械 2009.12 外部视觉 2010.14 内部视觉(单片) 2011.9 键合强度(破坏性键合拉力测试) 2012.9 射线照相 2013.1 DPA 内部目视检查 2014 内部目视和机械 2015.14 耐溶剂性 2016 物理尺寸 2017.11 内部目视(混合) 2018.6 金属化扫描电子显微镜 (SEM) 检查 2019.9 芯片剪切强度 2020.9 粒子撞击噪音检测测试
测试方法方法编号环境测试 1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.10 稳态寿命 1006 间歇寿命 1007.1 约定寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.9 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.15 密封 1015.11 老化测试 1016.2 寿命/可靠性特性测试 1017.3 中子辐照 1018.7 内部气体分析 1019.9 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序 1021.3数字微电路的剂量率翻转测试 1022 场效应晶体管 (Mosfet) 阈值电压 1023.3 线性微电路的剂量率响应 1030.2 封装前老化 1031 薄膜腐蚀测试 1032.1 封装诱发的软错误测试程序(由阿尔法粒子引起) 1033 耐久性测试 1034.2 芯片渗透测试(针对塑料设备) 机械测试 2001.4 恒定加速度 2002.5 机械冲击 2003.12 可焊性 2004.7 引线完整性 2005.2 振动疲劳 2006.1 振动噪声 2007.3 振动,变频 2008.1 视觉和机械 2009.12 外部视觉 2010.14 内部视觉(单片) 2011.9 键合强度(破坏性键合拉力测试) 2012.9 射线照相 2013.1 DPA 内部目视检查 2014 内部目视和机械 2015.14 耐溶剂性 2016 物理尺寸 2017.11 内部目视(混合) 2018.6 金属化扫描电子显微镜 (SEM) 检查 2019.9 芯片剪切强度 2020.9 粒子撞击噪音检测测试
第 12 节 00 00 摘要 第 13 节 特殊建筑 第 13 节 00 00 摘要 第 14 节 输送设备 第 14 节 00 00 摘要 第 15 至 20 节 标准格式中无章节 第 21 节 消防 第 21 节 00 00 摘要 第 22 节 管道 第 22 节 00 00 摘要 第 22 节 05 23 管道阀门和过滤器 第 22 07 00 管道绝缘 第 22 14 31 潜水污水泵 第 22 34 00 家用热水设备 第 23 节 采暖、通风和空调 第 23 节 00 00 摘要 第 23 05 00 基本材料和方法第 23 05 14 变频驱动器 第 23 05 20 节 压力表和阀门 第 23 05 21 节 温度表和测试井 第 23 05 29 节 设备支持 第 23 05 53 节 HVAC 管道和设备识别 第 23 07 00 节 机械绝缘 第 23 08 00 节 机械调试 第 23 09 23 节 楼宇自动化系统 (BAS) 第 23 09 43 节 实验室气流控制系统 第 23 21 00 节 泵 第 23 21 15 节 地下水暖管道 第 23 31 00 节 管道和空气分配 第 23 52 00 节 产热 第 23 64 00 节 冷水机组 第 23 65 00 节 冷却塔 第 23 74 00 节 空气处理机组 第 23 90 00 节设施燃料系统部门 24 标准格式中无部分部门 25 集成自动化
自闭症谱系障碍 (ASD) 等神经发育疾病的早期诊断仍是一个尚未得到满足的需求。其中一个困难是识别与 ASD 表型相关的生物信号。视网膜电图 (ERG) 波形已被确定为可能对 ASD 等神经系统疾病进行分类的信号。ERG 波形源自光感受器和视网膜神经元对短暂闪光的响应而产生的电活动,为中枢神经系统提供了一个间接的“窗口”。传统上,波形是在时域中进行分析的,但最近,人们已成功地使用离散小波变换 (DWT) 对 ERG 进行了时频频谱 (TFS) 分析,以表征信号的形态特征。在本研究中,我们建议使用高分辨率 TFS 技术,即变频复合解调 (VFCDM),根据两个信号闪光强度分解 ERG 波形,以建立机器学习 (ML) 模型来对 ASD 进行分类。其中包括 N = 217 名受试者(71 名 ASD 患者,146 名对照患者)在两种不同闪光强度,446 和 113 Troland 秒 (Td.s) 下的右眼和左眼的 ERG 波形。我们使用 DWT 和 VFCDM 分析了原始 ERG 波形。我们从 TFS 中计算特征并训练 ML 模型(例如随机森林、梯度提升、支持向量机)以将 ASD 与对照患者进行分类。使用独立于受试者的验证策略对 ML 模型进行了验证,我们发现具有 VFCDM 特征的 ML 模型优于使用 DWT 的模型,实现了 0.90 的受试者操作特性曲线下面积(准确度 = 0.81、灵敏度 = 0.85、特异性 = 0.78)。我们发现与较低频率相比,较高频率范围(80 – 300 Hz)包含更多与 ASD 分类相关的信息。我们还发现,右眼中更强的 446 Td.s 闪光强度提供了最佳分类结果,这支持对 ERG 波形进行 VFCDM 分析,作为辅助识别 ASD 表型的潜在工具。