摘要 旋转唇形密封件因其多种优良性能而被广泛应用于飞机公用系统中,其可靠性评估受到越来越多的关注。提出一种基于时变相关分析的可靠性评估方法。采用时变Copula函数建立旋转唇形密封件两项性能指标泄漏率和摩擦扭矩之间的依赖关系,以多项式表示时变参数,并采用有效的Copula选择方法选取最优Copula函数。基于贝叶斯方法进行参数估计,基于蒙特卡罗方法计算全寿命期间的可靠度。对旋转唇形密封件进行退化试验,并通过试验数据对所提模型进行验证。基于试验数据确定了最优Copula函数和多项式的最优阶数。结果表明,该模型可有效评估旋转唇形密封件的可靠性,且能获得较好的拟合优度。 � 2019 中国航空航天学会。由 Elsevier Ltd. 制作和托管。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。
摘要 大规模大脑网络如何促进持续注意力的机制尚不清楚。注意力时时刻刻都在波动,这种持续的变化与参与注意力内外分配的大脑网络之间功能连接的动态变化相一致。在本研究中,我们调查了大脑网络活动在不同注意力集中水平(即“区域”)之间的变化情况。参与者执行了手指敲击任务,根据先前的研究,区域内的表现或状态由低反应时间变异性确定,而区域外则由低反应时间变异性确定。区域内会话往往比区域外会话更早发生。考虑到注意力随时间波动的方式,这并不奇怪。采用一种称为准周期模式分析(即可靠的网络级低频波动)的新型时变功能连接方法,我们发现默认模式网络 (DMN) 和任务正网络 (TPN) 之间的活动在区域内状态与区域外状态相比明显更负相关。此外,前顶叶控制网络 (FPCN) 开关区分了这两个区域状态。背侧注意网络 (DAN) 和 DMN 中的活动在两个区域状态下都不同步。在区域外期间,FPCN 与 DMN 同步,而在区域内期间,FPCN 切换到与 DAN 同步。相比之下,腹侧注意网络 (VAN) 在区域内期间与 DMN 的同步程度高于在区域外期间。这些发现表明,不同大脑网络中低频波动的时变功能连接会随着持续注意力或其他随时间变化的过程的波动而变化。
自 1983 年以来,“绿野仙踪”一词已在实验心理学、人为因素、人体工程学和可用性工程领域广泛使用,用来描述一种测试或迭代设计方法,其中实验者(“巫师”)在实验室环境中模拟理论上的智能计算机应用程序的行为(通常是进入另一个房间并拦截参与者与系统之间的所有通信)。有时这是利用参与者的先验知识来完成的,有时这是一种低级欺骗,用于管理参与者的期望并鼓励自然行为(但我希望在实验的汇报部分始终进行适当的披露!)。
Le 博士目前是阿肯色大学电气工程与计算机科学系 (EECS) 人工智能与计算机视觉 AICV 实验室的助理教授兼主任。此前,她曾在卡内基梅隆大学 (CMU) 担任博士后。Le 博士分别于 2018 年和 2015 年在 CMU 获得电气与计算机工程博士和硕士学位。她分别于 2009 年和 2005 年在越南获得计算机科学硕士和学士学位。Le 博士因其在机器人、机器学习、计算机视觉和医学分析方面的重大贡献而获得国际认可。她的研究解决了各种现实世界的挑战,包括可信决策、不完美数据(有限标记数据、噪声数据、有偏见的数据、看不见的数据、小物体)和边缘设备上的实时应用。她精通多种模式,擅长处理图像、视频、点云、体积数据、时间序列和遥感数据。值得注意的是,她的专业知识涵盖图像处理、场景理解、多对象跟踪、行为分析、医学图像分析、3D 重建和实时机器人感知。Le 博士的工作被认为是最先进的,她的许多研究成果已成功部署到现实世界的应用中,包括边缘设备上的尖端实现。她的研究成果包括拥有三项专利,并在各种著名会议、书籍章节和顶级期刊上共同撰写了 130 多篇论文和文章。她在 Google Scholar 上的 h 指数为 26,i10 指数为 64,截至 2024 年 5 月 19 日,引用次数为 2,829 次(8ck0k UAAAAJ)。Le 博士自 2021 年起担任 ScienceDirect 的《机器学习与应用》(MLWA)期刊的副主编,并主持了 Asilomar 和 MICAD 等会议。 Le 博士还担任 Frontier 和 MDPI 等多家期刊的客座编辑。她组织了著名会议 MICCAI 的教程和研讨会,例如 MICCAI 2018 的医学成像深度强化学习教程和 MICCAI 2019 年和 2020 年的少标签和不完美数据的医学图像学习研讨会。医学图像计算的可解释和注释高效学习:第三届国际研讨会 2020。她积极参与社交活动,尤其是 2019-2022 年 MICCAI 女性社交活动,并担任组织者。她曾担任 2021 年和 2022 年 Google NACMI AMLI 夏季训练营的首席讲师。
虽然对海洋二氧化碳去除(MCDR)的研究扩大了速度,但对单个MCDR选项的风险和好处的重要未知数仍然存在。本文分析了对MCDR的专家理解的假设和期望,重点是对这一新兴气候行动领域负责任治理的核心问题。利用了与参与MCDR研究项目的专家进行学术和企业家精神的访谈,我们重点介绍了四个主题紧张关系,这些主题紧张局势使他们的思维定向,但在科学和技术评估中通常是未陈述或隐含的:(1)“自然性”作为MCDR方法评估的标准的相关性; (2)通过循证建设的替代范式来加速研发活动的需要; (3)MCDR作为一种废物管理形式的框架,反过来又将产生新的(目前知之甚少)的环境污染物形式; (4)对包容性治理的承诺,在确定MCDR干预措施中的特定利益相关者或选民方面的困难。尽管对这四个问题的专家共识不太可能,但我们建议确保考虑这些主题的方法丰富有关新型MCDR能力的负责发展的辩论。
抽象学者以前已经将“心脏是君主/统治者”的理论来源归因于政治的君主制观点。然而,根据远古时代的最新发现的文件和相关文件,可以发现,“心脏是君主”的理论可能源于传统文化中对“宗教”意识形态的依恋的重要性,这促进了身体的心脏,应该促进人体作为统治者的中心,后来又是“君主”。在儒家,道教,折衷主义者和其他QIN文学中都提到了类似的认知观点,但仅在中医的系统中,它们在建立以心脏为中心的Zang-Fu理论中发挥了重要作用。传统中医是一项主要是由临床实践开发的,其基本目的是治愈疾病和拯救人们。尽管中医的哲学(TCM)根源在Qin王朝中,但发展是其他哲学所独有的。具有丰富的文化含义和哲学思想,TCM无疑是中国文明珍宝的关键,值得更多的关注和探索。
************* GRF 代表普通研究基金。HMRF 代表卫生及医疗研究基金。ITC 是创新科技委员会,RTH-ITF 代表 ITF 项目的研究人才中心。ITF-MRP 是创新科技基金 - 大学中游研发计划。NSFC 是中国国家自然科学基金,是中国国务院直属的国家机构。ITF-TCFS 是创新科技基金 - 技术合作资助计划。所有这些都是竞争性的外部资助。(a)外部资助 - 作为首席研究员或联合首席研究员
管理局和市中心发展局商业补助计划,强调合作机会。这可能包括用以可持续发展为重点的回扣补充补助金并改善交叉推广。这种合作将在未来的董事会会议和工作人员之间进一步讨论。B. 2025 年工作计划董事会审查并批准了 2025 年工作计划,授权两名董事会成员与工作人员一起敲定草案措辞。为了确保这一年富有成效和影响力,董事会专注于缩减大量项目,确认与可持续发展目标的一致性,确定参与程度,并将重叠项目合并到共同主题下。C. 可再生能源计划董事会审查并批准了可再生能源计划,该计划将取代战略计划中的现有部分,并提交给理事会以提高认识。最新修订包括摘要、更新的数字以及可再生能源增长的五大机会的优先排序。董事会强调需要关注商业和社区规模的项目,并讨论了实现这一目标的策略,因为仅靠住宅努力不足以实现将容量从 8 兆瓦显着增加的目标。