(1) 模态叠加法通过叠加船体振动模态响应得到的应力分量来计算结构应力响应。(2) 根据船体振动分析选择水弹性模拟中要使用的特征模态。(3) 对于将要进行疲劳强度评估的单元,应获得相对于所选特征模态的应力变换矩阵。(4) 应力时间序列是通过结合水弹性模拟计算出的模态响应时间序列和从 (3) 获得的应力变换矩阵来计算的。(5) 通常,模态叠加中使用的特征模态数越多,结构响应的精度就越高。然而,由于包括局部变形在内的高阶模态会对结构响应产生影响,因此模态叠加法的特征模态需要经过验证后谨慎选择。
本研究对活塞销进行了受迫频率响应分析。使用 Ansys Mechanical 19.2 程序对活塞销进行了振动分析。有限元分析完成后,根据模态结果可知,前 12 个模态模型的固有频率范围为 38721 至 79346 赫兹。根据模态分析结果,活塞销在工作过程中不会发生共振。因此,需要进行包括模态分析在内的频率扫描,以检测可能与模态分析中获得的前 12 个模态的固有频率一致的共振频率。因此,使用模态叠加法对谐波分析进行了求解,间隔为 50 个,步长为 1000 Hz,范围为 30000-80000 Hz。为了抑制共振频率,使用六种不同的恒定阻尼比重复进行谐波分析,并对结果进行了比较。
航空伽马射线光谱法在与岩石相关时相对容易理解,但风化材料中的响应和放射性元素分布则鲜为人知。这项工作使用航空伽马射线光谱法和测高法来确定位于巴西亚马逊西部地区红土壳和拆解产品出现概率较高的区域。通过布尔和模糊技术使用地图代数来创建可预测性数字模型,突出显示红土壳出现的有利区域。布尔技术中使用了索引叠加法。模糊技术使用了模糊代数乘积运算符、模糊代数和运算符和模糊伽马运算符。两种模型都表明,预测的有利性和现场结壳的存在之间存在良好的相关性,然而,模糊模型显示出更高的相关性,并突出显示了布尔模型未识别的区域。相反,布尔模型允许在最终地图上单独可视化与每个变量或其可能组合的影响相关的区域。因此,基于应用于测高和机载伽马射线光谱数据的数学模型识别红土结壳是一种新工具,它将对地质填图和对与风化材料中的响应和放射性元素分布相关的理解做出重大贡献。© 2016 Elsevier B.V. 保留所有权利。