2 ( | ψ 1 ⟩ + | ψ 2 ⟩ )。换句话说,改变初始叠加态各个分支局部相的局部幺正变换,同时也改变了粒子的底层物理态。下一步要证明,上述两种情形下改变的物理态是不同的。薛定谔方程确保一个区域的局部幺正变换不会改变粒子在其他区域的波函数。从灵能本体论观点来看,这意味着一个区域的局部幺正变换不会改变粒子在其他区域的物理状态。那么,改变 | ψ 1 ⟩ 局部相的局部幺正变换只会改变 | ψ 1 ⟩ 区域内粒子的物理状态,而改变 | ψ 2 ⟩ 局部相的局部幺正变换只会改变 | ψ 2 ⟩ 区域内粒子的物理状态。因此,上述两种情况下改变的物理状态是不同的。这证明了灵能本体观的全局相的真实性。上述证明隐含地假设空间中每个点的单个粒子的波函数代表该点的局部物理性质。这是一个自然的假设,为现有的波函数本体论解释(如波函数实在论)所承认(Albert,2013)。在此假设下,改变粒子空间叠加的一个分支的局部幺正变换只会改变该分支区域的物理状态(如果物理状态有任何变化)。这是上述证明的基础。请注意,原则上可以通过保护性测量(直至全局相)来测量空间中每个点的单个粒子的波函数(当波函数已知时)(Aharonov and Vaidman,1993;Aharonov,Anandan and Vaidman,1993;Gao,2015)。例如,上述叠加各分支的密度和通量密度1 √
我们预见到可以在受量子纠错码 (QECC) 保护的量子比特流上搭载经典信息。为此,我们提出了一种通过故意引入噪声在量子流上发送经典比特序列的方法。这种噪声会引发一个受控的征兆序列,可以在不破坏量子叠加的情况下对其进行测量。然后可以使用这些征兆在量子流之上编码经典信息,从而实现多种可能的应用。具体而言,搭载量子流可以促进量子系统和网络的控制和注释。例如,考虑一个节点彼此交换量子信息的网络 [1-7]。除了用户数据之外,网络运行还需要同步模式、节点地址和路由参数等控制数据。在经典网络中,控制数据会消耗物理资源。例如,带内同步要求传输节点在数据流中插入特定模式的比特(消耗额外带宽)来分隔数据包,而接收节点则要求从传入的比特中搜索此类模式 [8]。然而,将量子比特作为控制数据插入对量子网络来说并不是一个可行的选择,因为测量会破坏量子态叠加 [9]。出于这个原因,一些研究断言量子网络将需要经典网络来实现带外信令和控制 [7]。另一方面,参考文献 [10-12] 开发了将经典比特和随机数(使用连续变量)一起传输以实现量子密钥分发 (QKD),以增强经典网络的安全性。相反,我们渴望将经典比特和量子比特(使用离散变量)一起传输,以控制量子网络。
摘要:胃癌是一种常见的恶性肿瘤,发病率和死亡率很高。人类表皮生长因子受体2(HER2)的过表达与胃癌的转移潜力增加和临床结果不佳有关。尽管经过证实的临床反应率是经批准的Her2靶向thera派的临床反应率,包括曲妥珠单抗结合化学疗法,但它们的长期临床益处有限,不可避免的疾病进展仍然对胃癌的临床治疗构成重大挑战。因此,探索新的策略以增强HER2阳性患者的治疗结果至关重要和紧迫。Here, we reported that DX126-262, a novel HER2-targeted antibody-drug conjugate, generated by conjugating a potent Tubulysin B analogue (Tub-114) to humanized anti-HER2 monoclonal antibody, exhibited a significant synergistic inhibitory effect with both Cisplatin and 5-FU in HER2-positive gastric cancer NCI-N87 cells.此外,与单一疗法或单药疗法或双重药物组合(Cisplatin Plus 5-FU)或一线护理(SOC,SOC,SOC,SOC,Herseptin and Complatin and Cosplatin and Cobsplication and Complication in Complication frof Civin and Complicin and Complication frof Cisplatin and Complication,and Comboce),以及在体内和双重组合中,DX126-262与顺铂和5-FU结合的三重药物组合策略在VIVO O和体内治疗效率上显示出更好得多的情况。 NCI-N87细胞和异种移植模型中的第三线SOC(DS-8201A)。同时,三重药物组合疗法没有表现出叠加的毒性。综上所述,我们的发现提供了令人信服的证据,表明DX126-262与顺铂和5-FU相结合发挥协同抗肿瘤活性,并且是改善HER2阳性晚期或转移性胃癌的临床效率的有希望的策略。
量子计算为解决传统计算机难以解决的问题提供了一种有前途的替代方案。绝大多数量子计算文献涉及量子比特、双态系统的集合以及产生它们之间任意相互作用的门。在任意相互作用的假设下,量子计算机的计算空间可缩放为 2 N ,其中 N 是量子比特的数量。状态空间的指数增长以及这些状态任意叠加的能力是量子计算机相对于传统计算的主要优势之一。然而,设计量子计算机的最大挑战之一是实现量子比特之间的相互作用,同时尽量减少与环境以及其他量子和经典噪声源的相互作用。最近的努力试图将量子问题映射到 d 状态(qudit)量子计算机上 [1]–[3]。早期的实验方法已将问题映射到多状态系统或量子比特的最优控制问题。这样的计算系统可按 d N 的量级缩放,其中 N 是量子比特的数量。其中一个主要目标是,与严格的量子比特系统相比,qudit 系统将具有更高的噪声容忍度。这与当今的主要方法形成了鲜明对比——使用一组双态单元或量子比特 [4],[5]。除了利用物理系统的自然特性来容忍噪声之外,qudit 量子计算机还可以减少空间需求。具体来说,高维系统上的量子计算可能比量子比特更有效率,甚至可能比量子比特系统提供渐近计算改进 [6]。此外,高维系统上的纠缠态无法通过成对纠缠量子比特态的张量积来模拟 [7]。
第一部分:简介 植被使开发区域变得有吸引力、有用且有价值。我们看不到的是成功建立植被所需的规划和管理。随着明尼苏达州太阳能项目的增长,有机会开发“可叠加”的效益;即除了生产可再生能源之外的额外效益。使用对传粉者友好、适合放牧且对景观有益的本地植物可以带来可叠加的效益,例如:改善土壤健康、储水、过滤水、碳封存、减少风和地表水侵蚀、野生动物栖息地、粮食生产和降低当地能源成本。本指南提供制定、实施和监控长期植被管理计划所需的工具和信息。什么是植被建立和管理计划以及为什么需要它?植被管理计划 (VMP) 详细说明了场地将如何随着时间的推移进行植被、维护和监控。明尼苏达州公用事业委员会批准的所有公用事业规模太阳能场地都需要植被管理计划,并且需要本文件中列出的信息。其他州机构资源,如水土资源委员会的栖息地友好型太阳能、DNR 的太阳能项目草原建立和维护技术指导以及 DNR 的商业太阳能选址指导,均提供可帮助公司制定成功计划的信息。提交场地许可申请前,需要有完整且经批准的植被管理计划。编写良好且组织良好的植被建立和管理计划的好处成功项目的第一步是制定深思熟虑且组织良好的 VMP!它将帮助您专注于管理目标和目的,并制定一个从长远来看可节省时间和资源的计划。除了运营优势之外,使用这些指南制定的完善的 VMP 可确保您在 VMP 中拥有开始机构审查所需的信息。可能需要其他信息,但遵循这些指南可以奠定坚实的基础。
量子物理学中一个令人费解的问题是,在两个状态 | φ ⟩ 和 | ψ ⟩ 的量子叠加态 α | φ ⟩ + β | ψ ⟩ 中,是否存在状态 | φ ⟩ 和状态 | ψ ⟩ 或者状态 | φ ⟩ 或者状态 | ψ ⟩ 。事实上,当我们建立这样的叠加态时,也就是当我们准备它时,我们需要有 | φ ⟩ 和 | ψ ⟩ ,但是当我们使用这个状态时,也就是当我们测量它时,我们得到 | φ ⟩ 或 | ψ ⟩ 。因此,当我们建立这种叠加态时,它类似于合取,但当我们使用它时,它类似于析取。这种叠加的构建和使用方式之间的差异让人想起 Prior 的 tonk 等非和谐连接词的自然演绎规则。在本文中,我们捍卫了以下论点:这些非和谐连接词模拟了量子测量中出现的信息擦除、不可逆性和不确定性,而和谐连接词模拟了信息保存、可逆性和确定性。更具体地说,在讨论了和谐和非和谐演绎规则的概念之后(第 2 节),我们引入了一种具有逻辑联结词 ⊙(读作:“sup”,代表“叠加”)的直觉命题逻辑,该逻辑具有非和谐演绎规则,我们为这种逻辑引入了一种证明术语语言,即 ⊙ 演算(读作:“sup-演算”),并且我们证明了它的主要性质:主题归约、证明归约的终止、引入性质和部分合流(第 3 节)。这些证明大多使用标准技术,但有一些特殊性,以适应这种演算。然后,我们扩展这种演算,引入标量来量化一个证明归约成另一个证明的倾向(第 4 节),并表明这种证明语言包含量子编程语言的核心(第 5 节)。请注意,带有 ⊙ 的直觉命题逻辑不是推理量子程序的逻辑。它是一种以量子程序类型为命题的逻辑。
目的:每个个体的唇印都是独一无二的。唇印作为确定身份的生物特征记录之一的潜力已得到广泛认可。然而,通过比较已形成的潜在唇印来研究其可靠性的研究却很少。本研究通过比较已注册的唇印和瓷杯上已形成的潜在唇印,重点研究唇印在个人身份识别中的可靠性。材料和方法:包括 102 名年龄在 18-30 岁之间的受试者(52 名男性和 50 名女性)的样本。在标准瓷杯上制作潜在和叠加的唇印。用指纹粉显影潜在指纹。然后,将涂有唇膏的唇印记录在透明胶带上。使用数码相机用标准尺拍摄已显影的潜唇印和已记录的唇印,并进行比较。唇印采用 Tsuchihashi 提出的方案进行分类。使用 Pearson 卡方检验 (IBM SPSS 版本 20) 进行统计分析,p 值为 0.05。结果:无论性别如何,唇印都是独一无二的。他们对数字图片比较的解释证实了独特模式的存在以及提取类似于指纹的特征的可能性。III 型是研究组中观察到的最常见的模式。结论:我们得出结论,由于唇印的独特性,唇印作为生物特征记录具有高度可靠性。唇印已证明有足够的证据表明是故意记录的,并且已开发的潜印进行了比较,这可以作为最简单、最容易的比较方法之一。然而,唇印的真实性尚处于初步阶段,需要更系统的研究才能被法律纠纷接受。临床意义:研究结果可以加强唇印作为识别工具的可靠性,并讨论了唇印应用的未来可能性。关键词:生物识别、指纹、法医牙科学、唇印。世界牙科杂志 (2019):10.5005/jp-journals-10015-1629
眼底视网膜成像和荧光血管造影数据,利用视网膜图像中视网膜血管树的存在。6 Mahapatra 等人应用生成对抗网络在注册文件的监督下注册多模态图像,这些注册文件由其他传统方法获得。7 然而,在这两项研究中,叠加方法仅限于用相同相机和相同视野拍摄的视网膜图像,只是波长不同(用标准相机拍摄的荧光血管造影和彩色眼底图像)。此外,人工智能已用于分析单模态图像分析以对疾病进行分类或检测,10-12 但目前还没有方法可以共定位和分析多个成像和功能数据。因此,作为应用人工智能分析多仪器成像和功能研究的初步步骤,我们尝试将来自扫描激光平台的图像叠加到眼底照相机平台上。这些成像平台利用不同的光学路径和不同类型的照明(扫描激光与泛光照明)。我们选择使用红外扫描激光检眼镜 (IR SLO) 图像作为原型 SLO 图像来叠加到彩色眼底 (CF) 上。照片是用眼底照相机拍摄的,因为所有接受光学相干断层扫描 (OCT) 扫描的患者都会进行此类成像,而且红外图像的光学和纵横比预计与用 SLO 拍摄的自发荧光 (AF) 或多色 (MC) 图像相似并因此适用于这些图像,所以这些结果可能适用于许多类型的图像。我们注意到 SLO 图像是使用与 CF 图像不同的光学和仪器拍摄的,因此这似乎是确定 AI 代理是否可以通过检查血管位置来完成这种叠加的良好开端。这项研究的创新之处在于,我们对一种新型 AI 算法在多模态视网膜图像配准方面的表现进行了严格的、隐蔽的研究。我们的算法能够执行图像配准,而无需大量手动注释的真实图像集。
尽管在理解极端环境下的物质方面不断取得令人瞩目的进展,但利用现有的分析和计算技术,在实验和观察之外进行定量扩展仍然具有挑战性。众所周知,经典计算在提供量子系统动力学或密集量子系统性质的稳健结果方面存在局限性,例如参考文献 [1]。Feynman [2] 等人的开创性工作已经预见到了这些局限性,他们将量子计算确定为一条前进的道路。量子计算机现已成为现实,虽然发展迅速,多样性和能力不断增强,但目前仅限于中等大小的噪声量子比特和量子数系统,量子相干时间相对较短,即我们处于噪声中型量子 (NISQ) 时代 [3]。量子计算提供的额外能力是对纠缠和叠加的控制,我们正在学习如何将其集成到我们的计算工具箱和分析技术中。量子计算对于特定的计算机科学问题具有优势,例如参考文献 [4]。 [4],研究人员现在正积极寻求量子优势在科学应用方面的应用。由于我们在标准模型物理中面临的挑战本质上是量子力学的,人们乐观地认为,它们可能为科学应用提供量子优势的早期证明。使用理想的量子计算机可以有效地进行实时时间演化 [5]。因此,如果能以足够的精度准备相关的初始状态,未来的量子计算机有望模拟复杂过程的时间演化,如强子化和碎裂、低能核反应、热化、相干中微子味演化和早期宇宙中的物质产生,例如参考文献 [6–8]。尽管初始状态准备在规模上通常效率不高,即使使用量子计算机,但大自然在这方面对我们通常很仁慈,出现了对称性、间隙和层次结构,因此经典和量子模拟的结合是可行的
1935 年,薛定谔提出了他认为是反对量子力学哥本哈根诠释的归谬法。他的论证基于一个“荒谬的案例”,而这个案例如今被广泛用于描述量子叠加的反直觉性质。薛定谔想象把一只猫放在一个看不见的盒子里,盒子里有一个装置,可以有 50% 的概率在一小时内杀死这只猫。由于这个致命装置采用量子过程作为触发,所以他认为这只猫处于 50% 活猫 + 50% 死猫的量子叠加态。在本文中,我们指出,如果薛定谔猫实际上如人们普遍断言的那样代表了 50% 活猫 + 50% 死猫的量子叠加,那么猫盒系统就是量子信息比特 (Qbit) 的物理实例。这与哥本哈根诠释相一致,哥本哈根诠释认为,在进行测量之前,猫是死是活的事实是不存在的。因此,对于与“打开盒子”的测量(其可能的测量结果为“活猫”或“死猫”)互补的某些测量,50% 活猫 + 50% 死猫的状态必须是 100% 概率的结果。如果不能提供物理上有意义的互补测量来“打开盒子”,并以 50% 活猫 + 50% 死猫的状态作为其(确定的)测量结果所代表的明确经验结果,那么 50% 活猫 + 50% 死猫的状态仅代表该单次“打开盒子”测量的多次试验的结果分布。也就是说,50% 活猫 + 50% 死猫的状态不是量子叠加,薛定谔猫仅仅是支持薛定谔归谬的经典信息位(Cbit)的物理实例。以双缝实验作为 Qbit 的示例,说明了互补测量的含义(双缝实验中的位置 x 和动量 p)。