摘要 本文提出了一种宽带堆叠微带贴片天线结构,采用微带馈电技术实现宽带宽和高增益。所提出的堆叠天线在 C 波段的频率范围为 4GHz 至 10GHz。进行了参数分析,以研究元件间距离对天线性能(方向性、输入阻抗和辐射效率)的影响。结果表明,在全驱动元件的情况下,可以在短距离内实现高方向性。所提出的天线用于广泛的应用,例如卫星通信、气象雷达系统、Wi-Fi 和 ISM 波段的应用。众所周知,C 波段在恶劣天气条件下的表现优于卫星通信的标准 Ku 波段。使用 HFSS 工具分析了天线的参数。关键词:微带贴片天线、堆叠天线、ISM 和 C 波段、卫星应用
Huebsch ® 的堆叠式洗衣机/烘干机采用了创新的堆叠概念,占用的地面空间只有传统洗衣机和烘干机并排放置时的一半。独立式软安装设计可安装在所有地板类型或楼层。洗衣机和烘干机都具有与标准洗衣机和烘干机相同的连接和连接。无需额外的管道或电气更改。Huebsch 的堆叠式洗衣机/烘干机结合了重型结构和可靠的操作,经得起时间的考验。它们设计时移动部件较少,原因只有一个:这样您将面临更少的维护问题和更少的磨损。前置式产品具有
从架构角度来看,数字生态系统通常被归类为“平台介导网络”(Rochet & Tirole,2003;Eisenmann、Parker 和 Van Alstyne,2006;Evans 和 Schmalensee,2007)或具有“分层模块化架构”,其中包括服务层和内容层(Yoo 等人,2010;Parker 等人,2016)。然而,这些分类仅捕捉到了一些基本特征。后来文献中提出了一个更细致的定义,将数字生态系统描述为一个可扩展的代码库(平台),辅以第三方模块(应用程序)和接口(如 API、SDK 和模板),以实现互操作性(Tiwana 等人,2010 年;Boudreau,2012 年;Tiwana,2013 年;Anderson 等人,2014 年;Gawer,2014 年;Ghazawneh & Henfridsson,2015 年;Cennamo 等人,2018 年)。这些接口通常被称为“边界资源”,促进了平台与其参与者之间的公平关系,并成为理解数字生态系统动态的核心分析单位(Eisenmann 等人,2011 年;Henfridsson & Bygstad,2013 年;Eaton 等人,2015 年)。
“从使系统 S 退相干的环境 E 的片段 F 中可以提取多少有关系统 S 的信息?”是量子达尔文主义的核心问题。迄今为止,大多数答案都依赖于 SF 的量子互信息,或通过直接测量 S 提取的数据。这些是真正需要的合理上限,但计算起来要困难得多——片段 F 对于有关 S 的信息的通道容量。我们考虑一个基于不完美 c-not 门的模型,其中可以计算上述所有内容,并讨论其对客观经典现实出现的影响。我们发现所有相关量,例如量子互信息以及通道容量都表现出类似的行为。在与客观经典现实的出现相关的机制中,这包括与不完美 c-not 门的质量或 E 的大小无关的缩放,甚至几乎与 S 的初始状态无关。
无细胞的DNA(CFDNA)是一种迅速的分子生物标志物类别,已在各种生物医学领域进行了广泛的研究。作为液体活检的关键组成部分,CFDNA测试由于样本收集的便利性以及所提供的大量遗传信息而在疾病检测和管理方面变得突出。但是,CFDNA的更广泛的临床应用目前受到CFDNA分析的预分析程序缺乏标准化的阻碍。许多基本挑战,包括选择适当的放分析程序,预防短CFDNA片段损失以及各种CFDNA测量方法的验证,仍然没有得到解决。这些现有的障碍导致了比较结果和确保重复性的困难,从而破坏了临床环境中CFDNA分析的可靠性。本综述讨论了影响CFDNA分析结果的关键下分析因素,包括样本收集,运输,临时存储,加工,提取,质量控制和长期存储。审查提供了有关可实现共识的明确性,并对当前问题进行了分析,目的是标准化用于CFDNA分析的精率程序。
第 3 章 风力涡轮机叶片的复合材料织物自动铺层...................................................................................................................................................... 19
针对 PARP 进行化疗放射增敏的 IJROBP 肿瘤扫描:机遇、挑战和未来之路 作者:Henning Willers 医学博士和、Mechthild Krause 医学博士 @、Corinne Faivre-Finn 医学博士、哲学博士*、Anthony J. Chalmers 医学博士、哲学博士 # & 美国马萨诸塞州波士顿哈佛医学院麻省总医院 @ OncoRay – 国家肿瘤放射研究中心、医学院和大学医院 Carl Gustav Carus、德累斯顿工业大学、德累斯顿亥姆霍兹中心 - 罗森多夫、德国德累斯顿 *曼彻斯特大学、曼彻斯特学术健康科学中心、克里斯蒂 NHS 基金会、英国 # 格拉斯哥大学癌症科学研究所,英国格拉斯哥 通讯作者:Henning Willers 医学博士,马萨诸塞州总医院放射肿瘤科,马萨诸塞州波士顿 Fruit Street 55 号02114。电话:617-726-5184,hwillers@mgh.harvard.edu 标题:PARP 靶向放化疗 COI:HW – NCI,研究支持;MK – NCI,研究支持。CFF - 英国癌症研究中心有限公司、阿斯利康公司、NIHR、利兹大学、约克郡癌症研究中心、克里斯蒂 NHS 基金会信托,研究支持;阿斯利康、Elektra,差旅费;AJC - 医学研究委员会研究基金、英国癌症研究中心放射研究中心卓越中心,研究支持 资金:部分资金由美国国立卫生研究院国家癌症研究所资助,资助编号为 U01CA220714(HW、MK)。数据共享:N/A
使用叠层扫描技术,样品被聚焦在微芯片上小点上的相干同步加速器 X 射线束照射,衍射光束由像素检测器在远场检测。样品逐步穿过光束,直到扫描到整个感兴趣的区域。扫描期间照亮的区域需要重叠,导致步长小于光束直径。叠层扫描技术需要过采样,因为检测器只测量强度。使用迭代算法,仍然可以检索衍射同步辐射的相位信息。根据衍射图案、光束形状以及样品与检测器之间的距离,该算法可以将收集的数据重建为高分辨率图像,无论是 2D 还是 3D。简而言之,该算法计算样品后面的波场到达探测器的路径,其中波场的振幅被像素探测器记录的强度数据替换。之后,更新波场并进行另一次迭代。当感兴趣的区域深埋在结构内部时,可能需要事先准备样品。因此,在某些情况下,必须通过聚焦离子束铣削使感兴趣的区域可用于叠层成像。