抽象的DNA甲基化在所有生命领域都具有多种功能。在这项研究中,我们研究了三方二烷基卤代联盟中的古细菌甲基团。该联盟包括Haloferax Lucertense SVX82,Halorhabdus sp。svx81,以及一个来自dpann superphylum的纳米尺寸的纳米大小的古scultus svxnc。我们利用PACBIO SMRT和Illumina cDNA测序来分析来自不同组成的甲基甲基组学和转录组学的样品。内源性C TAG甲基化(典型的Haloferax)伴随着甲基化在其他四个基序中,包括GDG C HC甲基化,这是外尾疗特定的。我们对甲基化和未甲基化基序的分布的分析表明,自phat甲基化可能会影响基因调节。Graga A G甲基化的频率在高度表达的基因中增加,而C C TTG和GTCG A GG甲基化可以与限制性修饰(RM)活性有关。一般而言,在该古代的演变过程中,RM活性可能已经降低,以平衡细胞免受入侵者的保护,在压力环境中自限制引起的DNA损伤的减少以及在极端条件下DNA交换的益处。我们的甲基甲基菌群(Cryo-ET)数据表明,我们的甲基甲基分析酶导出了其甲基转移酶,以甲基化Haloferax基因组,揭示了共生体与宿主之间的相互作用的新方面。
结合是水平基因转移的主要机制,促进了抗生素耐药性在人类病原体中的传播。它涉及通过称为交配菌毛的细胞外附属物来避免供体和受体细胞之间的连接。在细菌中,结合机制由质粒或转座子编码,通常介导同源移动遗传元件的转移。对古细菌的共轭知之甚少。在这里,我们通过三个共轭pili的冷冻电子显微镜确定原子结构,两种来自高疗法古细菌(Aeropyrum pernix和pyrobaculum calidifontis),另一个由一个由细菌的细菌ti toumefaciial to to to to to to to to to to to to to to toumefacial-to to to to to to to to to to toumefiti。 pili。然而,古细菌共轭机制(称为CED)已被“驯化”,即结合机械的基因编码在染色体上,而不是在移动遗传元素上,并介导细胞DNA的转移。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2024年8月5日。 https://doi.org/10.1101/2024.08.05.606590 doi:Biorxiv Preprint
为了支持改善患者护理,该活动已由Medscape,LLC和新兴的传染病计划和实施。Medscape,LLC得到认可的持续医学教育委员会(ACCME),认证药物教育委员会(ACPE)(ACPE)和美国护士证书中心(ANCC)的认可,为医疗团队提供继续教育。Medscape,LLC指定此基于期刊的CME活动,最多为1.00 AMA PRA类别1 CRECTER™。医师应仅要求其参与活动的程度相称。成功完成此CME活动(包括参与评估部分),使参与者能够在美国内科医学委员会(ABIM)维护认证(MOC)计划中获得高达1.0 MOC的积分。参与者将赚取相当于该活动的CME积分数量的MOC积分。为了授予ABIM MOC信用,向ACCME提交参与者完成信息是CME活动提供商的责任。所有其他完成此活动的临床医生将获得参与证书。参加本期刊CME活动:(1)回顾学习目标和作者披露; (2)研究教育内容; (3)在最低传球分数为75%的情况下进行后测试,并在https://www.medscape.org/ qna/processor/72141上完成评估?show standalone = true&src = prt_jcme_eid_mscpedu; (4)查看/打印证书。有关CME问题,请参见第1744页。注意:Medscape的政策是避免在认可的活动中使用品牌名称。但是,为了尽可能清楚,在此活动中使用商标名称来区分混合物和不同的测试。这并不是要推广任何特定产品。
1医学与药学学院微生物,血液学和免疫学系,DSchang大学,P.O。Box 96, Dschang, Cameroon 2 Laboratory of Tropical and Emerging Infectious Diseases, Buea, Cameroon 3 Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium 4 Department of Biomedical Sciences, Faculty of Health Sciences, University of Bamenda, P.O.Box 39,Bambili,喀麦隆5综合系统生物学研究所(I2SYSBIO),Valencia的CSIC-大学,Paterna 46980,西班牙6日6医学实验室科学系,Bamenda大学卫生科学学院,P.O. BOX 39,BAMBILI,喀麦隆7动物生物学系,科学系,DSchang大学,P.O。 box 067,Dschang,喀麦隆8江西省传统中医学药理学主要实验室,国家工程研究中心现代化中国医学现代化研究中心 - 甘丹医科大学,甘尼医科大学,甘尼医学院,341000,中国>Box 39,Bambili,喀麦隆5综合系统生物学研究所(I2SYSBIO),Valencia的CSIC-大学,Paterna 46980,西班牙6日6医学实验室科学系,Bamenda大学卫生科学学院,P.O.BOX 39,BAMBILI,喀麦隆7动物生物学系,科学系,DSchang大学,P.O。 box 067,Dschang,喀麦隆8江西省传统中医学药理学主要实验室,国家工程研究中心现代化中国医学现代化研究中心 - 甘丹医科大学,甘尼医科大学,甘尼医学院,341000,中国>BOX 39,BAMBILI,喀麦隆7动物生物学系,科学系,DSchang大学,P.O。box 067,Dschang,喀麦隆8江西省传统中医学药理学主要实验室,国家工程研究中心现代化中国医学现代化研究中心 - 甘丹医科大学,甘尼医科大学,甘尼医学院,341000,中国
ǂ当前地址:微生物学系 - 荷兰尼亚梅根,拉德布德大学,荷兰通讯作者:嗜酸脂@gmail.com摘要Asgard Archaea在复杂的细胞生命的起源中至关重要。Hodarchaeales(Asgardarchaeota类Heimdallachaeia)最近被证明是真核生物的最亲近的亲戚。然而,这些古细菌的有限抽样限制了我们对它们的生态学和进化1-3的理解,包括它们在真核生态中的预期作用。在这里,我们几乎将Asgardarchaeota metagenome组装基因组(MAGS)的数量增加到869,其中包括136个新的Heimdallarchaeia(49 Hodarchaeales)和几个新型谱系。检查全球分布显示hodarcheales主要在沿海海洋沉积物中发现。对其代谢能力的详细分析显示,海姆达尔奇亚的行会与其他Asgardarchaeota不同。这些古细菌编码有氧真核生物的标志,包括电子传输链配合物(III和IV),血红素的生物合成以及对活性氧(ROS)的反应。Heimdallarchaeia膜结合的氢化酶的预测结构结构包括其他复合物样亚基,可能会增加质子的动力和ATP合成。Heimdallachaeia基因组编码COXD,该COXD调节真核生物中的电子传输链(ETC)。因此,在Asgard-e Cabaryotic祖先中可能存在有氧呼吸的关键标志。此外,我们发现Heimdallarchaeia存在于各种塞米亚海洋环境中。这种扩展的多样性揭示了这些古细菌在真核生物的早期阶段可能带来的能量优势,从而加剧了细胞复杂性。
宏基因组通常包含许多来自真核生物的读物。但是,通常没有17种可靠的方法来估计18个元素组中非微生物读数的普遍性,迫使许多分析技术使所有读取都是微生物的经常构成假设19。例如,元基因组组装的20个基因组(MAG)恢复工作的成功是根据映射到21个恢复的MAG的读数的数量来评估的,如果存在真核生物22读,该程序将低估真正的保真度。在这里,我们介绍了“ Singlem Microbial_fraction”(SMF),这是一种可伸缩的23算法,可稳健地估计24元组的细菌和古细菌读数的数量,以及平均微生物基因组大小。SMF不使用真核25参考基因组数据,可以应用于任何Illumina Metagenome。基于26个SMF,我们提出了“域调整的映射率”(DAMR)作为改进的27公制,以评估从元基因组中回收的微生物基因组回收率。我们在模拟和真实数据上基准为28 SMF,并证明DAMR可以指导基因组29恢复。将SMF应用于136,284个公开可用的元基因组,我们报告了30个微生物分数和微生物特异性的微生物31丰度模式的实质性变化,从而提供了有关微生物和真核生物如何分布在地球上的32个。最后,我们表明,大量的人类宿主33个DNA序列数据已存放在公共元基因组存储库中,34可能反对在35释放之前对这些阅读进行筛选的道德指令。38随着宏基因组测序的采用持续增长,我们预计36 SMF是评估基因组恢复工作的宝贵工具,以及37个全球微生物分布模式的恢复。
本文研究了二元混合电极的电化学行为,其中包括等效量的锂离子电池活性材料,即lini 0.5 MN 0.3 CO 0.3 CO 0.2 O 0.2 O 2(NMC),LIMN 2 O 4(LMO),寿命0.35 MN 0.65 MN 0.65 PO 4(LFMP)和Lifepo 4(Lifepo 4(life testro controtro)和lif intres intros introse intros intros introse contring intring intring intring intring in actring in acting and a) Operando X射线衍射(XRD)。所有可能的50:50混合组合进行了研究,并在连续和脉冲电荷和放电过程中遵循混合组分之间的电流分布。结果表明,单个材料的电压曲线对当前分布的显着影响,每个组件的有效C率在整个电荷状态(SOC)中变化。脉冲解耦电化学测试揭示了在放松过程中混合成分之间的电荷交换,展示了“缓冲效果”,该效应也已通过时间分辨的操作数XRD实验在实际混合物中精心考虑考虑束诱导的效果的真实混合物中捕获。发现电荷转移的方向性和大小取决于组件和细胞SOC的性质,也受温度的影响。这些依赖性可以合理化,考虑到混合组成部分的热力学(电压谱)和反应动力学。这些发现有助于促进对混合电极内部动力学的理解,这是对合理设计的有价值的见解,以满足锂离子电池的多样化运营需求。
简介:低压微生物学实验是探究努力的重要组成部分,旨在为航天器的前进微生物污染的潜力提供信息,以及寻找Mars上灭绝和现存寿命的迹象(Carrier等人,2020年; Perl等; Perl等。2021a)。开创性的低压微生物工作的工作已证明许多细菌物种能够在低压的火星条件下生长,即降低了微生物(Schwendner&Schuerger,2020年)。例如,以前的研究对从7 MBAR生长的各种环境样本中分离出了20种低磷脂细菌(Schuerger&Nicholson,2016)。随之而来的工作开发了低压性的生物体,开发了低压微生物学实验的低压质体性,通过转录组和生理学研究(Fajardo-cavazos等,2018; Schuerger等,2020)。然而,以前的大多数低压微生物学研究都集中在细菌上,重点是行星保护。低压微生物学探索将古细菌融合在一起,重点是寻找灭绝和现存寿命的迹象很少。我们以前发表了第一次尝试从域古细菌中发展出一种低压力条件的方法,代表了火星上定义的地下小境。这项工作记录了模型的卤素古细菌haloferax火山在地下火星条件下约4个月的生存(Robinson&McQuaig-Ulrich,2022年)。2024)。后续实验揭示了h。volcanii的先前未知的代谢能力,可与火星相关的氧化氧化甲氯酸酯厌氧生长(Robinson等从这项工作中,我们假设,厌氧菌偏爱的化学条件可能会使火山烟草在低压浅的地下火星条件下能够生长。在这里,我们记录了H.火山菌作为卤素古细菌的第一批低皮质耐体。进一步,我们研究了这些卤素生物产生的类胡萝卜素色素如何,这些生物被认为是天文学研究中潜在的生物签名(Perl等人,2021b),是由地下火星条件的生长而实现的。