摘要:微生物学上影响的腐蚀(MIC)是在存在微生物及其生物膜的情况下材料降解的过程。这是一种环境辅助的腐蚀类型,非常复杂且具有挑战性。不同的金属材料,例如钢合金,镁合金,铝合金和钛合金,据报道有MIC对其应用的不利影响。尽管许多研究人员报告了细菌作为微生物腐蚀的主要罪魁祸首,但已发现包括真菌,藻类,古细菌和地衣在内的其他几种微生物在金属和非金属表面上引起MIC。但是,对真菌,藻类,古细菌和地衣引起的麦克风的关注更少。在本文论文中,已经详细讨论了不同微生物,包括细菌,真菌,藻类,古细菌和地衣的影响,对工程材料的腐蚀特性进行了详细讨论。本综述旨在总结直接或间接导致结构材料降解的所有腐蚀性微生物。指责每种MIC病例的细菌,而无需对腐蚀部位进行适当研究,并深入研究生物膜和分泌的代谢物可能会在理解材料失败的实际原因方面造成问题。要在任何环境中识别真正的腐蚀剂,研究在特定环境中存在的各种微生物非常重要。
简介:低压微生物学实验是探究努力的重要组成部分,旨在为航天器的前进微生物污染的潜力提供信息,以及寻找Mars上灭绝和现存寿命的迹象(Carrier等人,2020年; Perl等; Perl等。2021a)。开创性的低压微生物工作的工作已证明许多细菌物种能够在低压的火星条件下生长,即降低了微生物(Schwendner&Schuerger,2020年)。例如,以前的研究对从7 MBAR生长的各种环境样本中分离出了20种低磷脂细菌(Schuerger&Nicholson,2016)。随之而来的工作开发了低压性的生物体,开发了低压微生物学实验的低压质体性,通过转录组和生理学研究(Fajardo-cavazos等,2018; Schuerger等,2020)。然而,以前的大多数低压微生物学研究都集中在细菌上,重点是行星保护。低压微生物学探索将古细菌融合在一起,重点是寻找灭绝和现存寿命的迹象很少。我们以前发表了第一次尝试从域古细菌中发展出一种低压力条件的方法,代表了火星上定义的地下小境。这项工作记录了模型的卤素古细菌haloferax火山在地下火星条件下约4个月的生存(Robinson&McQuaig-Ulrich,2022年)。2024)。后续实验揭示了h。volcanii的先前未知的代谢能力,可与火星相关的氧化氧化甲氯酸酯厌氧生长(Robinson等从这项工作中,我们假设,厌氧菌偏爱的化学条件可能会使火山烟草在低压浅的地下火星条件下能够生长。在这里,我们记录了H.火山菌作为卤素古细菌的第一批低皮质耐体。进一步,我们研究了这些卤素生物产生的类胡萝卜素色素如何,这些生物被认为是天文学研究中潜在的生物签名(Perl等人,2021b),是由地下火星条件的生长而实现的。
摘要:在生命的三个领域中,同源重组(HR)的过程在修复双链DNA断裂和重新开始停滞的复制叉中起着核心作用。奇怪的是,参与人力资源过程的主要蛋白质参与者似乎对于高素化的古细菌提出了有关人力资源在极端条件下的古细菌中的复制和修复策略中的作用的有趣问题。该过程的一个关键参与者是重组酶RADA,它允许同源链搜索,并提供了遵循DNA合成并恢复遗传信息所需的DNA底物。DNA聚合酶在古细菌中尚不清楚链交换步骤后的操作。使用Abyssi Abyssi蛋白的工作,在这里我们表明,DNA聚合酶,家庭-B聚合酶(POLB)和家族-D聚合酶(POLD)都可以负责处理RADA介导的重组中间体。我们的结果还表明,与POLB相比,POLD的效果要少得多,以扩展位移环(D-Loop)底物处的入侵DNA。这些观察结果与先前对热圆菌物种获得的遗传分析相吻合,表明POLB主要参与DNA修复,而不是必不可少的,这可能是因为Pold可以接管其他伴侣。
微生物是没有显微镜的微小生命形式。他们约占地球生物的60%。“微生物”一词是指各种微观生物,包括细菌,真菌,病毒,古细菌和生物。这些微生物可能对人类无害或有害。一些微生物会引起严重的感染和疾病,而另一些微生物有助于维持环境平衡。古细菌是单细胞原核生物,具有与细菌不同的细胞壁结构。它们包含独特的脂质,使它们能够在极端环境中蓬勃发展。古细菌也可以在人类的肠道和皮肤中找到。微生物,包括微生物,是作为单细胞或簇存在的微观生命形式。有七种主要类型:细菌,古细菌,原生动物,藻类,真菌,病毒和多细胞动物寄生虫(Helminths)。古细菌由于其独特的细胞壁结构和缺乏肽聚糖而与真实细菌区分开。它们是可在极端条件下生存的原核细胞。一些古细菌组包括甲烷基因,卤素,热疗法和精神病/冷冻剂。这些生物使用各种能源,例如氢气,二氧化碳,硫或阳光(光营养形式)来存活。真核生物是包含核和复杂细胞器的单细胞或多细胞细胞。他们使用专业结构通过光合作用或吸收/摄入获得滋养。大多数真核细胞具有真实的核,并且主要是多细胞的。在数量,生物量和多样性方面,最大的微生物群是真核生物。鞭毛使用类似鞭子的结构进行运动;纤毛具有微小的跳动头发; Amoeboids采用伪虫; Sporozoans是非运动的。由几丁质组成的细胞壁支持各种营养方法:分解器吸收有机材料,共生体与植物形成关系,寄生虫与宿主有害相互作用。真菌产生称为菌丝的丝状管,骨料形成菌丝体。繁殖是通过释放孢子而发生的。非细胞实体由核酸核心组成,这些核酸核心被蛋白质涂层包围,缺乏繁殖外宿主细胞或独立代谢的能力。他们可以感染原核细胞和真核细胞,从而导致疾病。真核生物(如扁虫和round虫)共同称为蠕虫,在技术上不是微生物,而是微生物生命阶段,对于临床目的而言很重要。微生物的生物实体太小,无法用肉眼看到。例子包括细菌,古细菌,藻类,原生动物和微观动物(如尘螨)。尽管它们的重要性,但这些生物在历史上被低估了,直到Antonie van Leeuwenhoek发明了显微镜。发现微生物的发现使路易斯·巴斯德(Louis Pasteur)意识到许多疾病是由它们引起的,促进了巴氏杀菌的实践以确保食品安全。今天,我们认识到微生物在各种环境中的作用,包括水,土壤,动物皮肤和消化道。这种理解强调了免疫系统在预防疾病中的重要性。微生物在生态系统中起着重要作用,就像其他生物一样。细菌,特别是与引起疾病的病原体有关,但也具有帮助人类的有益特性。研究表明,古细菌与Eubacteria明显不同,甚至可能与人类更紧密相关。古细菌可以在各种环境中找到,包括水,土壤和我们的消化系统,它们有助于维持我们的健康。他们也可以在极端条件下繁衍生息,例如高温,酸度或咸味,使其成为温泉的常见居民和大多数生物体敌对的其他地区。几种动物物种以微观形式出现,包括节肢动物,旋转膜,loricifera,nematodes和原生动物。原生动物是一组单细胞的真核生物,其比细菌或古细菌的细菌更像动物和植物。它们会引起几种严重的人类疾病,例如疟疾,弓形虫病,贾第鞭毛虫,非洲卧铺疾病和chagas病。像酵母一样的微观真菌对人类无害,但在烘烤和酿造中起着至关重要的作用。酵母以糖为食,并将其转化为二氧化碳和乙醇,这会导致烘焙食品上升和发酵饮料变得陶醉。模具是微生物,与真菌具有某些特征但不是真正的真菌。它们包括感染植物并在过去引起毁灭性作物失败的致病霉菌。粘液模具是能够令人印象深刻的合作的单细胞生物,许多细胞聚集在一起以作为一个实体运行。科学家已经使用粘液模具来研究智能和解决问题。微观藻类曾经被认为是植物,但现在被认为是导致陆地植物的谱系的亲属。这些光合生物在整个历史中都很重要,有助于将氧气泵入大气中。藻类既可以通过清洁水,产生氧气或产生最终在我们的海鲜和饮用水中产生的有毒化合物来受益和伤害人类。科学家正在努力进行分类的其他许多微观生物。过去,许多微生物被聚集在“生物学家”的类别下,但是许多科学家现在认为该系统不足。在这里,科学家曾经使用文章文本,曾经使用一个称为“ Protista”的王国对无法识别为植物,动物或真菌的真核生物进行分类。然而,遗传分析揭示了该群体的许多成员与其他王国更紧密相关,而不是彼此之间的关系。不同的微生物可能对人类无害或有害,例如链球菌细菌,会导致链球菌喉咙和猩红热,以及乳酸杆菌,这有助于抵抗诸如胃流感之类的疾病。微生物提出的新发现已经根据光学显微镜研究推翻了先前的假设,揭示了对微生物的更复杂的理解。研究的进步导致了过去十年来我们对这些微小生命形式的理解的重大转变,并继续迅速发展。
在过去的几十年里,位点特异性DNA结合蛋白极大地改变了生物技术和医学研究领域。然而,由于开发针对特定靶位的DNA结合蛋白的复杂性,基因编辑通常需要蛋白质工程师[1]。CRISPR/Cas技术的进步极大地扩展了生物研究人员的分子工具箱[2]。CRISPR/Cas系统是在细菌和古细菌中发展起来的一种适应性免疫系统,可用于防御外源遗传元件。在细菌和古细菌中,进化的Cas蛋白可以切割入侵病毒和质粒的核酸[1]。此外,细菌细胞可以使用CRISPR-Cas系统保护自己免受再次感染。CRISPR/Cas通过插入一小段外源DNA在第一次感染防御后赋予一种免疫记忆[3]。因此,CRISPR-Cas系统可以为宿主提供保护
地下沿海沉积物中的微生物群落高度多样,并且在营养循环中起着重要作用。,虽然沙质沉积物中的微生物的主要部分呈足为Epipsammon(附着在沙粒上),但只有一小部分在间质毛孔中繁殖。到目前为止,对这些自由生活微生物群落的组成知之甚少。在这项研究中进行了研究,在沙滩的地下中,我们比较了沉积物中的古细菌和细菌群落结构,以及应用16S rRNA基因测序的相应毛孔水。我们发现,根据孔隙空间的不同,自由生活原核生物的比例仅为0.2-2.3%。间质微生物群落显示出一个小的重叠,附着的分数为4-7%,并且包含在孔道中仅发现的75-81%ASV的独特组成。它们比各自的沉积物级分更多样化,并且显示出更高的古细菌比。古细菌主要隶属于Dpann Superphylum的纳米章,相对丰富的间隙群落相对丰富。细菌分数包括与候选门辐射(CPR)有关的几种物种。已知两种原核生物谱系都有小细胞尺寸,包括尚未尚未识别的代谢功能的尚未培养的物种。我们的发现得到了对相邻潮汐平坦的调查,显示出类似的趋势。因此,我们的结果表明在沿海沉积物的地下存在不同的间质微生物群落。这种尚未培养的纳米章的自然富集和心肺复苏群的成员为靶向元基因组分析甚至隔离这些群体成员提供了进一步代谢表征的机会。
摘要 含有 Alba 结构域的蛋白质在古细菌和真核生物中普遍存在。通过与 DNA、RNA 或 DNA:RNA 杂交体结合,这些蛋白质在基因组稳定、染色质组织、基因调控和/或翻译调节中发挥作用。在疟原虫恶性疟原虫中,已描述了六种 Alba 结构域蛋白 PfAlba1–6,其中 PfAlba1 已成为
Bathyarchaeia代表了一类古细菌常见,并且在沉积生态系统中丰富。在这里,我们报告了56个在不同环境的宏基因组中鉴定出的谷胱甘肽病毒的元基因组组装基因组。基因共享网络和系统基因组学分析导致了四个病毒家族的提议,包括Realms Duplodnaviria和Adnaviria的病毒,以及古细菌特异性的纺锤形病毒。基因组分析这些病毒中发现了各种CRISPR元素。拟建家族“ Fuxiviridae”的病毒带有非典型类型IV-B CRISPR-CAS系统和Cas4蛋白,可能会干扰宿主免疫。Viruses of the family “ Chiyouviridae ”encode a Cas2-like endonuclease and two mini-CRISPR arrays, one with a repeat identical to that in the host CRISPR array, potentially allowing the virus to recruit the host CRISPR adaptation machinery to acquire spacers that could contribute to competition with other mobile genetic elements or to inhibit host defenses.这些发现提出了Bathyarchaeia Virome的轮廓,并瞥见了其反防卫机制。