本文介绍了用于空间数据链路应用的 GaAs 行波电光调制器阵列的设计注意事项。调制器设计的核心是低损耗折叠光学配置,可在设备的一端提供直接的直线射频 (RF) 接入,而所有光纤端口均位于另一端。此配置是多通道应用所需的密集单片调制器阵列的关键推动因素。它还可以实现更紧凑的封装、改进的光纤处理,并通过消除 RF 馈电装置中的方向变化来实现高调制带宽和低纹波。单个 Mach-Zehnder (MZ) 和单片双并行 (IQ) 调制器都已评估高达 70 GHz,带宽约为 50 GHz,低频开/关电压摆幅 (V π ) 为 4.6 V(电压长度乘积为 8.3 Vcm)。折叠式设备比传统的“直线式”调制器要紧凑得多,而适度的设备阵列(例如 × 4)可以容纳在与单个调制器尺寸相似的封装中。讨论了独立寻址 MZ 调制器单片阵列(每个都有自己的输入光纤)的设计考虑因素,并提出了实用配置。
位于卡胡卢伊机场、耗资 3.4 亿美元的新联合汽车租赁 (ConRAC) 设施是雄心勃勃的机场现代化计划的一部分,该计划旨在升级该州的机场,提高运营效率并改善旅客体验。卡胡卢伊机场 ConRAC 通过将大多数租车公司整合到一个最先进的建筑内并通过电车连接到主机场航站楼来实现这一目标。ConRAC 设施是一座三层建筑,包括部分地下室区域和小型封闭式屋顶结构,用于通过楼梯出口和电梯进入屋顶停车区。该建筑总面积约为 190 万平方英尺,从一端到另一端长近四分之一英里,包括 3,700 多个专供租车公司使用的停车位和 700 个供员工使用的停车位。此外,还有 72 个加油站、12 个洗车场和 11 个汽车租赁维修站。主结构采用现浇混凝土建造,柱子分别支撑跨度为 60 英尺 x 40 英尺的后张拉梁和大梁。梁以 20 英尺为中心间隔,提供规则且重复的框架系统以简化模板。结构板主要由单向后张拉板组成,通常为 5
位于卡胡卢伊机场的耗资 3.4 亿美元的新综合租车 (ConRAC) 设施是雄心勃勃的机场现代化计划的一部分,该计划旨在升级该州的机场,提高运营效率并改善旅客体验。卡胡卢伊机场 ConRAC 通过将大多数租车公司整合到一个最先进的建筑中并通过有轨电车连接到主要机场航站楼来实现这一目标。ConRAC 设施是一座三层建筑,包括部分地下室区域和小型封闭屋顶结构,用于楼梯出口和电梯进入屋顶停车区。该建筑总面积约为 190 万平方英尺,从一端到另一端近四分之一英里,包括 3,700 多个专供租车公司使用的停车位和 700 个供员工停车的停车位。此外,还有 72 个加油站、12 个洗车场和 11 个汽车租赁维修站。主结构采用现浇混凝土建造,柱子支撑后张拉梁和大梁,跨度分别为 60 英尺 x 40 英尺。梁以 20 英尺为中心间隔,提供规则且重复的框架系统以简化模板。结构板主要由单向后张拉板组成,通常为 5
链接、数据屏幕和保存/加载功能)。要操作图标,请按 Enter。当您拨打电话号码时,电话另一端的计算机通常会要求您输入数字密码,以便您获得进一步的访问权限。几乎所有的代码都可以在逻辑分析仪的帮助下破解。一旦您拨入另一个系统,逻辑分析仪就会抓取尽可能多的信息。因此,如果您不知道密码,请挂断电话,返回主菜单,然后启动逻辑分析仪。然后,逻辑分析仪的信息将输入到数据屏幕供您检查,并将包括以下内容:高、中、低或相同奇数(1、3、5、7、9)和偶数(0、2、4、6、8)例如:数据屏幕为您提供代码的前三个数字。假设它们是 1、2 和 3。您必须计算出接下来的三个数字(代码始终为六位数字)。数据屏幕显示最后三位数字的总和 - 假设它是 15,而您对实际数字的线索是:偶数/低奇数/中偶数/高由此您可以算出完整代码是 123456。123078 或 123258。所有这些都符合上述数据。然后使用您尝试访问的计算机重新登录并使用您的六位数密码访问其数据。好。开始吧因为这种游戏风格对很多人来说可能很新,所以我们会为您提供开始游戏的指南。1. 好吧,您唯一的线索是电话号码 515-6261
摘要:高速氧燃料 (HVOF) 喷涂广泛应用于各个行业。这是因为它可以减少部件磨损、侵蚀和腐蚀。如果考虑机械性能和疲劳行为,HVOF 热喷涂涂层对部件的影响是可以争论的。这项工作的主要目标是研究涂有碳化钨-镍的碳钢的疲劳性能,并使用有限元分析来研究涂有碳化钨-镍的碳钢的断裂过程。这些研究的疲劳试验是在 ANSYS Workbench 软件中进行的,其中平均理论设置为 Goodman 理论。样本在 SolidWorks 软件中以狗骨形状建模。疲劳试验模拟是在试样的一端施加 9 kN、10.5 kN、12 kN 和 13.5 kN 的力,另一端施加固定支撑的情况下进行的。根据结果,与未涂层试样相比,涂层试样可以维持更长时间,而较大的力将缩短试样的使用寿命。结果还表明,与涂层试样相比,未涂层试样的最大损伤更大,而较大的力将使试样受到的损伤更大。对于疲劳强度,与涂层试样相比,未涂层试样具有更高的应力,而较大的力将使试样的疲劳强度更高。断裂结果表明,与涂层钢相比,未涂层钢具有最大的平滑区域。关键词:碳钢、涂层、疲劳、热喷涂、有限元分析
在进行此任务时,在高交通范围内执行此任务时,请样品一般安全的工作练习,以增加电池的高VIS背心或其他类型的轻型背心和/或反射式服装(如果有)。c)将供体车辆发动机放置在接收器车辆电池附近,不直接交通。不要让车辆互相触摸。d)两个电池的清洁端子,因此可以清楚地看到“+”和“”标记。e)将红色电缆连接到每个车辆电池的“+”柱。f)将黑色电缆连接到良好的供体电池的“ - ”帖子。g)最后,将黑色电缆的另一端连接到车辆发动机的未上色金属部分。注意:如果车辆配备了MRS无线电,则必须在提升之前断开电源的电源。h)启动供体车辆发动机(请注意,由于内部计算机传感问题迎接的所有者手册,一些新车辆建议将发动机关闭)。i)启动接收器车辆发动机。j)汽车运行后,以相反的顺序卸下电缆。k)允许接收器车辆发动机至少运行10分钟,以充分充分充电电池。不要:a)不要尝试辅助增强冷冻电池或所有电解质液的蒸发b)如果供体电压源大于15伏(例如,重型设备)。c)在存在易燃材料的情况下不要执行此任务。
CRISPR / Cas12a 是一种单效应核酸酶,与 CRISPR / Cas9 一样,由于其能够产生靶向 DNA 双链断裂 (DSB) 而被用于基因组编辑。与 Cas9 产生的平端 DSB 不同,Cas12a 产生的粘性末端 DSB 可能有助于精确的基因组编辑,但这一独特功能迄今为止尚未得到充分利用。在当前的研究中,我们发现,短双链 DNA (dsDNA) 修复模板包含一个与 Cas12a 产生的 DSB 末端之一匹配的粘性末端和一个与 DSB 另一端相邻的基因组区域具有同源性的同源臂,能够精确修复 DSB 并引入所需的核苷酸替换。我们将这种策略称为“连接辅助同源重组”(LAHR)。与单链寡脱氧核糖核苷酸 (ssODN) 介导的同源定向修复 (HDR) 相比,LAHR 的编辑效率相对较高,这在报告基因和内源基因中均有体现。我们发现 HDR 和微同源介导的末端连接 (MMEJ) 机制都参与了 LAHR 过程。我们的 LAHR 基因组编辑策略扩展了基因组编辑技术的范围,并更广泛地了解了基因组编辑中涉及的 DNA 修复机制的类型和作用。
识别潜在有趣的基因或类似基因的特征的一种方法是使用cDNA数据库。CDNA对于基因鉴定很有用,因为它们是由mRNA制成的,并反映了基因组的表达区域。为了在时间和财务上进行大规模的cDNA测序,随机采用cDNA克隆,并测序cDNA的一端或两端。每个cDNA克隆仅在一个通过中进行测序,就像单个基因组读数一样。这些序列通常称为表达的序列标签(ESTS)。因此,EST是低质量的核酸序列,所有与单读相同的问题。大多数EST仅代表cDNA的一部分(一端或另一端)。但是,它们可以用作构建更完全注释的mRNA的构建块,例如RefSeq mRNA数据库中发现的一些序列。除了相对较低的EST读取质量(大约2%的误差)外,EST还具有其他局限性。通常,归一化程序用于允许对稀有的转录本进行采样。但是,仍然存在偶然的可能性,可能完全因为它们的表现较低或不在给定的库中而完全丢失了稀有的成绩单。转录本也可能遗漏,因为它们未在用于构建各种cDNA文库的组织,细胞类型或发育阶段表达。(有关更多信息,请参见NCBI手册。)在本练习中,我们将使用mRNA和EST序列指导和验证我们的注释工作。
在设计用于宽带模拟和数字的包装时,例如在串行通信链路或测试和测量应用中使用的包装,必须格外小心,以确保通过芯片上的芯片维持信号保真度到芯片外互连路径。芯片,例如电子测试仪器中使用的串行收发器或放大器,可能具有从DC到10s GHz的操作带宽,并且通常将其集成到50 O系统中。在包装和印刷电路板(PCB)上设计受控的阻抗传输线,这是一个相对简单的物质。但是,这两个领域之间的连接变得更加复杂。片上受控信号路径通常通过电线键连接路由到芯片上受控的阻抗路径。电线键连接由一端连接到IC上的键垫的电线组成,并在另一端连接到包装基板上的传输线(或直接在芯片板应用中的PCB上)。由于这些线键是电线的薄环,从接地平面上循环,它们几乎总是对电路感应,在信号路径中显示出比更高的特征阻抗的一部分。图。1。此简化的图形在陶瓷包装基板上显示了一个腔化的IC。模具位于陶瓷基板形成的腔体内,并粘合到铜模板上。粘结线从芯片控制的阻抗传输线连接到包装基板上的传输线。芯片厚度和陶瓷底物的厚度大致相等,因此
需求是由于粘合材料不良,非平板粘合表面,奇数包装情况还是仅仅是由于对高可靠性的需求;通过正确使用辅助电线,通常可以大大提高线键互连的完整性。辅助电线定义为安全线,安全凸起或隔离针迹(又称凸起的针迹)。旧的待命安全线已经成为一项资产已有几十年了,但是,这被安全颠簸所取代,安全性需要较小的第二键终止区域。此外,僵持针迹(SOS)具有更多的应用程序,并且还具有许多侧面好处,可以将其纳入电路设计中,以获得更好的电线强度性能,更少的互连(死于死亡结合)和较低的环路。隔离针键键合涉及将球碰撞放置在电线互连的一端,然后将电线与另一个球放在互连的另一端,并在先前放置的球碰撞上缝线。这会导致几乎均匀的针键键互连到颠簸,并具有固有的针键键拉力强度的改善。SOS的另一种用途是反向键(在模具键垫上的颠簸上的针键键),通常会导致比标准前向线环的较低的环轮廓,并且环路更强,因为电线尚未在球上方退火(在热影响的区域)。实施SOS的主要障碍是视觉检查员的重新培训和质量部门的批准。