Moor,M.,Banerjee,O.,Abad,Z.S.H。等。通才医学人工智能的基础模型。自然616,259–265(2023)。https://doi.org/10.1038/s41586-023-05881-4 Chen,Dongping,Yue Huang,Siyuan Wu,Jingyu Tang,Liuyi Chen,Yilin Bai,Yilin Bai,Zhigang He等。“ GUI-WORLD:针对GUI为导向多模式LLM的代理的数据集。”Arxiv预印型ARXIV:2406.10819(2024)。
摘要 — 对于病理病例和在不同中心获取的图像(而不是训练图像),用于医学图像分割的深度学习模型可能会意外且严重地失败,其标记错误违反了专家知识。此类错误破坏了用于医学图像分割的深度学习模型的可信度。检测和纠正此类故障的机制对于安全地将这项技术转化为临床应用至关重要,并且很可能成为未来人工智能 (AI) 法规的要求。在这项工作中,我们提出了一个值得信赖的 AI 理论框架和一个实用系统,该系统可以使用基于 Dempster-Shafer 理论的回退方法和故障安全机制来增强任何骨干 AI 系统。我们的方法依赖于可操作的可信 AI 定义。我们的方法会自动丢弃由骨干 AI 预测的违反专家知识的体素级标记,并依赖于这些体素的回退。我们在最大的已报告胎儿 MRI 注释数据集上证明了所提出的可信 AI 方法的有效性,该数据集由来自 13 个中心的 540 个手动注释的胎儿大脑 3D T2w MRI 组成。我们值得信赖的 AI 方法提高了四个骨干 AI 模型的稳健性,这些模型适用于在不同中心获取的胎儿脑部 MRI 以及患有各种脑部异常的胎儿。我们的代码可在此处公开获取。
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
摘要:人们越来越认识到人工智能 (AI) 的政治、社会、经济和战略影响的重要性。这引发了有关人工智能编程、使用和监管的重要伦理问题。本文认为,人工智能的编程和应用本质上都是 (顺) 性别化、性化和种族化的。毕竟,人工智能是由人类编程的,因此,谁来训练人工智能、教它学习以及这样做的伦理问题对于避免 (顺) 性别化和种族主义刻板印象的重现至关重要。本文的实证重点是欧盟资助的 iBorderCtrl 项目,该项目旨在通过实施多种基于人工智能的技术(包括面部识别和欺骗检测)来管理安全风险并提高第三国国民的过境速度。本文汇集了 1) 风险与安全 2) 人工智能与道德/移民/庇护以及 3) 种族、性别、(不)安全与人工智能等领域的文献,探讨了谎言检测对常规过境和难民保护的影响,概念重点关注性别、性取向和种族的交叉点。我们在此认为,iBorderCtrl 等人工智能边境技术存在重大风险,不仅会进一步边缘化和歧视 LGBT 人士、有色人种和寻求庇护者,还会强化现有的非入境做法和政策。
AI的进步超过了现有的监管格局,导致治理差距。这可能导致难以确保AI技术达到最高安全标准的困难。相反,过度严格的AI调节可能会引起创新,并转化为采用有益技术的延迟。自适应的AI监管环境可以鼓励技术及其在不同部门的应用中根据需要而发展。
本研究的重点是通过集成区块链技术来提高电子商务供应链的透明度和信任。这在区块链中非常重要,因为有必要保护,记录,验证,验证和共享多个各方的数据,以确保透明度和信任。为了实现这一目标,我们介绍了称为基于区块链的NSGA III-GKM的先进组合技术。遗传K-均值聚类(GKM)和非主导的分类遗传算法(NSGA-III)是两种高级算法,结合了以新颖方式使用的高级区块链技术来实现这一目标。区块链系统会产生大量的复杂数据,因此确定有意义的模式和趋势很重要。NSGA III和GKM解决了区块链的这些问题。本研究使用NSGA III来解决多个目标的问题,例如提高信任,透明度和运输成本降低。通过使用NSGA,有效地确定了最佳解决方案,可以平衡这些具有挑战性的目标。同时,GKM通过微调分类为类似群集的数据点来改善分组过程。这有助于确定基于区块链的供应链数据中的特定趋势。通过结合这些方法,我们能够改善电子商务供应链中的趋势和行动机制。这些合并的方法协助公司确定有效的供应链策略,这有助于最大程度地降低风险,并能够调整不断变化的区块链系统。来自电子商务供应链的现实世界数据用于测试该方法的功效。根据调查结果,成功地展示了各种目标之间的平衡,并提供了改善区块链驱动的供应链网络的建议。总体而言,通过将区块链与NSGA III和GKM相结合,它不仅可以确保安全性和信任,而且还利用高级分析来提高透明度和运营效率。因此,它将帮助组织实现弹性有效的供应链管理。
作为基因编写领域的先驱,Tessera Therapeutics 正在通过完善将短信息或长信息插入任何基因组的能力来改变人类治疗疾病的方式。Tessera 寻求一种解决方案,以确保超过 12 TB 的科学数据在由湿科学家和计算生物学家组成的大型跨职能团队中可查找、可访问、可互操作和可重复使用 (FAIR)。Tessera 利用 Quilt 和 Nextflow 的组合来加速其基因编辑发现的上市。
文章标题:人工智能(AI)在医疗保健中的应用:综述 作者:Mohammed Yousef Shaheen[1] 所属机构:沙特阿拉伯[1] Orcid ids:0000-0002-2993-2632[1] 联系电子邮件:yiroyo1235@tmednews.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要正确引用原始作品即可。使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行开放同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVRY8K.v1 预印本首次在线发布:2021 年 9 月 25 日
巴黎,法国 - 2025年3月11日 - Provenrun和Cryptonext很高兴宣布旨在增强嵌入式部门的安全解决方案的战略合作伙伴关系。 这项合作将使Provenrun添加Cryptonext的量词后加密(PQC)组件(PQC)组件到其可信赖的应用程序的目录中,使客户能够无缝整合尖端的安全技术。 通过量子计算的出现来应对量子威胁,传统的加密方法正在过时。 Cryptonext是Quantum Crypto敏捷性的领导者,提供了旨在减轻这些威胁的创新解决方案。 通过合并Cryptonext的PQC组件,ProvenRun将为其客户提供未来的安全措施,以确保长期保护防止不断发展的网络威胁。 对关键行业的未来防护安全性与两家公司的目标相吻合,以长期为受信任行业的客户提供服务,尤其是在汽车和国防部门。 ProvenRun在安全性软件解决方案方面的专业知识,再加上Cryptonext的高级加密技术,将为客户提供一个全面且强大的安全框架。 先进的安全操作系统/受信任的执行环境(TEE)的长期Provenrun Provencore的战略联盟现在将包括Cryptonext的PQC产品。 Provencore(为了为IoT设备提供无与伦比的安全性提供安全性)是第一个实现正式验证并持有享有声望的常见标准EAL7认证的操作系统。巴黎,法国 - 2025年3月11日 - Provenrun和Cryptonext很高兴宣布旨在增强嵌入式部门的安全解决方案的战略合作伙伴关系。这项合作将使Provenrun添加Cryptonext的量词后加密(PQC)组件(PQC)组件到其可信赖的应用程序的目录中,使客户能够无缝整合尖端的安全技术。通过量子计算的出现来应对量子威胁,传统的加密方法正在过时。Cryptonext是Quantum Crypto敏捷性的领导者,提供了旨在减轻这些威胁的创新解决方案。通过合并Cryptonext的PQC组件,ProvenRun将为其客户提供未来的安全措施,以确保长期保护防止不断发展的网络威胁。对关键行业的未来防护安全性与两家公司的目标相吻合,以长期为受信任行业的客户提供服务,尤其是在汽车和国防部门。ProvenRun在安全性软件解决方案方面的专业知识,再加上Cryptonext的高级加密技术,将为客户提供一个全面且强大的安全框架。先进的安全操作系统/受信任的执行环境(TEE)的长期Provenrun Provencore的战略联盟现在将包括Cryptonext的PQC产品。Provencore(为了为IoT设备提供无与伦比的安全性提供安全性)是第一个实现正式验证并持有享有声望的常见标准EAL7认证的操作系统。此集成为客户提供了量子安全性和加密敏捷性的无缝过渡,以确保其系统保持安全
摘要 - 以大语言模型(LLM)代表的AI生成的内容(AIGC)模型已彻底改变了内容的创建。高速下一代通信技术是提供强大的AIGC网络服务的理想平台。同时,高级AIGC技术还可以使未来的网络服务更加智能,尤其是在线内容生成服务。但是,当前AIGC模型(例如稳健性,安全性和公平性)的重大不信任性问题极大地影响了智能网络服务的信誉,尤其是在确保安全的AIGC服务方面。本文提出了TrustGain,这是一个可信赖的AIGC框架,结合了强大,安全和公平的网络服务。我们首先讨论网络系统中AIGC模型和相应保护问题的对抗性攻击的鲁棒性。随后,我们强调避免不安全和非法服务并确保AIGC网络服务的公平性的重要性。然后作为案例研究,我们提出了一种基于情感分析的新型检测方法,以指导网络服务中不安全内容的强大检测。我们对虚假新闻,恶意代码和不安全的评论数据集进行了实验,以代表LLM应用程序方案。我们的结果表明TrustGain是对可以支持可信赖AIGC网络服务的未来网络的探索。