背景CRISPR-CAS系统通过各种高级基因组编辑工具(例如核酸酶,基础编辑器和转座酶)演变,这些工具可以有效地产生靶向靶诱变[1]。尤其是,基于CRISPR系统开发的胞嘧啶碱基编辑器(CBE)和腺嘌呤碱基编辑器(ABE)可以在包括小鼠在内的各种生物体中有效地执行C•g至t•a和a•t至g•c替代基础[2,3] [2,3] [4,5]。最近,也报道了C c cg base Editor(CGBE1),使C可以在人类细胞中进行G基础转移的c转移[6]。然而,由于基因编辑限制(由于同源性定向修复(HDR))导致的基因编辑局限性(HDR),涉及一个或多个核苷酸插入,转化或截断的精确靶向突变仍然具有挑战性。Prime Editor(PE)是一种新的概念基因组编辑工具,包括带有Nickase Cas9(H840A)的融合蛋白和商业的Moloney Moloney鼠白血病病毒逆转录酶(M-MLV RT)。pe由编码所需的编辑序列[7]的Prime编辑指南RNA(PEGRNA)驱动。这种精心设计的基因组编辑系统允许靶向基础转化率的靶向诱变,以及小的插入和插入,而没有双链DNA断裂或供体DNA [7-10]。
可充电电池的行业标准诊断方法,例如混合动力汽车的混合脉冲功率表征(HPPC)测试,提供了一些健康状况(SOH)的迹象,但缺乏指导协议设计并确定降级机制的物理基础。我们为HPPC测试开发了基于物理学的理论框架,该框架能够准确确定多孔电极模拟中电池降解的特定机制。我们表明,电压脉冲通常比电流脉冲更可取,因为电压分辨线性化更快地量化了降低而无需牺牲精度或在测量过程中允许态度的显着变化。此外,从电极动力学尺度的差异中发现了电荷 /放电脉冲之间的不对称信息增益。我们演示了使用富含镍的阴极和石墨阳极的模拟锂离子电池上的物理信息的HPPC方法。通过物理知识的HPPC进行多变量优化,可以迅速确定与阳极处降解现象相关的动力学参数,例如固体电解质相间相(SEI)生长(SEI)生长和锂板,以及在阴极中,例如氧化诱导的阳离子疾病。如果通过实验验证了HPPC测试的标准电压协议,则可以通过为电池降解的可解释的机器学习提供新的电化学特征来加快电池SOH评估和加速材料设计的关键作用。©2024作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/ad4394]这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。
硬碳(HC)是网格级钠离子电池(NIB)的有吸引力的阳极材料,这是由于碳的广泛可用性,其高特定能力和低电化学工作潜力。然而,需要解决第一周期库仑的效率和较差的HC的问题,以使其成为NIB的实用长期解决方案。这些缺点似乎是电解质依赖性的,因为与碳酸盐电解质相比,基于醚的电解质可以在很大程度上改善性能。对这些性能差异背后机制的解释对于高度可逆的钠储存的合理设计至关重要。结合气相色谱,拉曼光谱,低温传递电子显微镜和X射线光电子光谱,这项工作表明,固体电解质中相(SEI)是基于乙醚和碳酸电解质之间的关键不同,这确定了电荷转移Kinetics和parasitic反应的范围。尽管两个电解质都没有在HC散装结构中储存的残留钠,但基于醚的电解液形成的均匀和共形SEI可以提高循环的效率和速率性能。这些发现突出显示了通过界面工程使用HC阳极实现长寿命级笔尖的途径。
化石燃料的消耗和日益紧迫的环境问题。[1,2] 人们投入了大量研究精力来开发各种类型的清洁能源转换和存储技术;这些密集的研究活动导致了太阳能电池、风力涡轮机、可充电电池 (RB) 和超级电容器的开发和商业化取得了巨大进展。[3–8] 金属卤化物钙钛矿太阳能电池 (PSC) 的快速发展代表了可再生能源转换领域最新和最令人兴奋的发展的一个极好例子。 [9–15] 由于其可调的带隙、[16] 高载流子迁移率、[17–19] 大的光吸收系数、[20] 和低的形成能,[21] 进展能够将光电转换效率 (PCE) 从 2009 年的 3.8% 迅速提高到 2019 年的 25.2%。[9,22] 每个组成部分的研究贡献对这一进展都不可或缺,这些进展包括调整化学成分和加工方法、控制晶体度和形貌、以及设计表面/界面缺陷。[23,24]
近年来,绿色节能建筑得到了更广泛的认可,因为它们能够节约能源,在某些情况下,还可以利用屋顶光伏太阳能电池或其他可再生能源发电。这些建筑面临的主要挑战之一是拥有经济的储能系统 (ESS),以减少电力削减的影响。本文提出了一个技术经济模型,用于评估和比较与独立光伏系统相关的三种储能技术,即锂离子 (Li-ion) 电池 (LIB)、质子交换膜可逆燃料电池 (PEM RFC) 和可逆固体氧化物电池 (RSOC)。该模型考虑了所考虑系统的退化,同时使用平准化储能成本 (LCOS) 指标评估其经济性。通过位于加利福尼亚州洛杉矶的典型商业建筑案例研究,说明了该模型的功能。不考虑退化的情况下,PEM RFC 的最终 LCOS 水平为 41.73 ¢/kWh,RSOC 为 28.18¢/kWh,LIB 为 25.85¢/kWh。另一方面,考虑到退化,第一年末的最终 LCOS 水平为 PEM RFC 的 41.79 ¢/kWh,RSOC 为 28.29¢/kWh,LIB 为 27.35¢/kWh。敏感性分析表明,三种考虑的 ESS 的 LCOS 对资本成本、寿命、折现率和往返效率的变化很敏感。此外,沿极化曲线的变化表明 PEM RFC 的配置最有效(效率最高,LCOS 最低)。研究表明,锂离子电池和燃料电池具有经济吸引力,有助于长期提高电网的可靠性和弹性,尽管它们容易退化。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
•无维护 - 无需浇水•比传统的铅酸电池更快•没有溢出或溢出•在休息期间以及与Nexsys®TPPL电池的轮班之间充电,设备保持工作,而不是坚持使用,而不是在浇水或换车站上 - 帮助您的运营商专注于更多可赚钱的核心活动。
1 1频道工程系,香港理工大学,香港,中国2号医学和工业超声中心,詹姆斯·瓦特工程学院,格拉斯哥大学,格拉斯哥大学,格拉斯哥大学,英国格拉斯哥,英国21118694r@connect.polyu.hk; tianshidexuanzhe@gmail.com; kokokhlam@polyu.edu.hk; kwokho.lam@glasgow.ac.uk通信:kwokho.lam@glasgow.ac.uk,中国香港香港理工大学电气工程系;詹姆斯·瓦特工程学院医学和工业超声学院,格拉斯哥大学,格拉斯哥大学,英国苏格兰,格拉斯哥大学†同样贡献。 摘要:随着电动汽车(EV)的普及,可充电电池的电压和最新电压(SOC)估计具有重要意义。 SOC参数已被用作传递可充电锂离子电池(LIB)的电能的指标,而电压已是监测所需的关键参数,以防止造成电池损坏的原因,尤其是在充电和放电过程中。 因此,研究重点是使用算法准确估算SOC和电压。 具有避免重大估计误差的能力,使用间接测量值(例如电压和电流)获得的参数,已采用常规扩展卡尔曼过滤(EKF)来估计SOC的最佳值。 但是,该算法在SOC和电压估计中的精度有限,并且对电压预测的误差降低仍然没有深入研究。 这项研究表明,常规的EKF算法会引起估计错误,尤其是当当前突然改变时。1 1频道工程系,香港理工大学,香港,中国2号医学和工业超声中心,詹姆斯·瓦特工程学院,格拉斯哥大学,格拉斯哥大学,格拉斯哥大学,英国格拉斯哥,英国21118694r@connect.polyu.hk; tianshidexuanzhe@gmail.com; kokokhlam@polyu.edu.hk; kwokho.lam@glasgow.ac.uk通信:kwokho.lam@glasgow.ac.uk,中国香港香港理工大学电气工程系;詹姆斯·瓦特工程学院医学和工业超声学院,格拉斯哥大学,格拉斯哥大学,英国苏格兰,格拉斯哥大学†同样贡献。 摘要:随着电动汽车(EV)的普及,可充电电池的电压和最新电压(SOC)估计具有重要意义。 SOC参数已被用作传递可充电锂离子电池(LIB)的电能的指标,而电压已是监测所需的关键参数,以防止造成电池损坏的原因,尤其是在充电和放电过程中。 因此,研究重点是使用算法准确估算SOC和电压。 具有避免重大估计误差的能力,使用间接测量值(例如电压和电流)获得的参数,已采用常规扩展卡尔曼过滤(EKF)来估计SOC的最佳值。 但是,该算法在SOC和电压估计中的精度有限,并且对电压预测的误差降低仍然没有深入研究。 这项研究表明,常规的EKF算法会引起估计错误,尤其是当当前突然改变时。1频道工程系,香港理工大学,香港,中国2号医学和工业超声中心,詹姆斯·瓦特工程学院,格拉斯哥大学,格拉斯哥大学,格拉斯哥大学,英国格拉斯哥,英国21118694r@connect.polyu.hk; tianshidexuanzhe@gmail.com; kokokhlam@polyu.edu.hk; kwokho.lam@glasgow.ac.uk通信:kwokho.lam@glasgow.ac.uk,中国香港香港理工大学电气工程系;詹姆斯·瓦特工程学院医学和工业超声学院,格拉斯哥大学,格拉斯哥大学,英国苏格兰,格拉斯哥大学†同样贡献。摘要:随着电动汽车(EV)的普及,可充电电池的电压和最新电压(SOC)估计具有重要意义。SOC参数已被用作传递可充电锂离子电池(LIB)的电能的指标,而电压已是监测所需的关键参数,以防止造成电池损坏的原因,尤其是在充电和放电过程中。因此,研究重点是使用算法准确估算SOC和电压。具有避免重大估计误差的能力,使用间接测量值(例如电压和电流)获得的参数,已采用常规扩展卡尔曼过滤(EKF)来估计SOC的最佳值。但是,该算法在SOC和电压估计中的精度有限,并且对电压预测的误差降低仍然没有深入研究。这项研究表明,常规的EKF算法会引起估计错误,尤其是当当前突然改变时。尽管可以通过诸如Double Kalman滤波等联合算法提高SOC精度,但是由于非线性误差的叠加,仍然需要优化EKF本身。在这项研究中,进行了修改后的扩展卡尔曼滤波(MEKF)算法的研究,以估算LIB的电压和SOC,并具有估计精度的极大提高。Yuasa Lev50单元在298 K处的标准放电率为0.2 c,以获取离线参数,然后使用新提出的新提出的动态估计数学电池模型(DBOFT)进行优化。这是第一次提出一种结合增益矩阵和噪声的方法,以减少当前转弯点的电压估计误差,从而大大提高了电压估计的准确性。具体来说,MEKF算法能够实时调整参数并减少SOC
领域中最重要的挑战是开发用于大型储能的有效技术(数百个TWH的水平),这将允许使用可再生能源(主要基于太阳能和风能)。这种技术应基于地壳中最丰富的元素,以变得具有成本效益。因此,今天非常重要的是,开发可靠且耐用的钠离子电池和磁电池非常重要。可充电镁离子电池(MIB)被称为锂离子击球仪(LIB)的潜在替代方法,并且非常适合大型储能应用,并引起了人们的注意作为有希望的多价金属电池技术。这些电池比LIB具有多个优势,包括由于镁的较高丰度和较高的特定能力(含量和体积)的可能性降低,形式
佛罗里达州法规 (403.7192) 要求在佛罗里达州销售的可充电电池和可充电电池供电产品的制造商和营销商对废弃电池实施永久收集和管理计划。
参考:1。Dueber,R。(2014)。可充电电池对可充电助听器解决方案有什么好处?听力学,询问专家12966。取自https://www.audiologyon.com/ask-the-experts/what-benefits-rechargable-batteries-or-batteries-or-12966#:〜:text = text =答案,听证%20 aids%20 throughout%20 the%20日。2。Heuermann,H。和Herbig,R。(2016年10月)。助听器电池:过去,现在和未来。听力学,第18176条。摘自https://www.audiologyonline.com/articles/hearing-aid-batteries-past-present-18305 3。Stevenson,Omisore,Madsen Pedersen和Taphuntsang。(2016年6月)。Phonak可充电听力解决方案。Phonak Pro。取自https://www.phonakpro.com/content/dam/phonakpro/gc_hq/en/resources/evidese/field_studies/do cuments/do cuments/fsn_part_part_1_rechargair_hearged_hearing_heration_heration_solution_solution_solution.pdf 4。(n.d。)。可充电助听器。可充电助听器。2022年11月3日从https://www.ocoton.com/solutions/rechargable-herning-aids检索5。(n.d。)。助听器响起 - 响起一个。助听器响起 - 响起一个。2022年11月3日,从https://pro.resound.com/en-us/products/heration-aids/nece tot