摘要:在核废料管理和暗物质研究中,KR/XE混合物的有效分离至关重要。到目前为止,科学家遇到了一个巨大的挑战:缺乏在室温下选择性地吸附kr在XE上的材料。这项研究提出了著名的金属 - 有机框架(MOF)Cubtc的开创性转化,以前以其XE吸附亲和力而被认可为无与伦比的KR选择性吸附剂。这一成就源于涉及MOF系统压缩的创新致密方法,其中晶体大小,颗粒间相互作用,缺陷和疏散条件是协同调节的。所得的致密CubTC相具有出色的机械弹性,辐射耐受性,并且在室温下尤其是KR比XE的前所未有的选择性。模拟和实验动力学扩散研究证实,密集的MOF中的气体扩散降低,这归因于其小孔窗和最小的颗粒室内空隙。较轻的KR元素表现出材料内部易于表面的传递和较高的扩散率,而较重的XE遇到的较高的难度增加了进入材料和较低的扩散率的难度。这种KR选择性MOF不仅代表了KR分离的显着突破,而且还表现出了显着的可加工性和可伸缩性。本文提出的发现强调了工程MOF在应对复杂挑战方面的变革潜力,预示了KR分离技术的新时代。关键字:金属 - 有机框架,KR/XE分离,KR选择材料,HKUST-1,灵活性,缺陷工程■简介
摘要 随着人们对高性能陶瓷氮化铝 (AlN) 的兴趣迅速增加,许多研究人员研究了对其进行加工的可能性。由于 AlN 被归类为难切削材料,使用辅助电极的电火花加工 (EDM) 工艺正在成为一种有效的加工方法。煤油作为介电流体,在工件表面形成连续的导电碳层以诱导和维持放电方面起着重要作用。大多数以前的方法使用管状电极将介电流体稳定地输送通过其中心孔。然而,在微细电火花加工的情况下,非常小的电极直径使得难以在电极上制造通孔,并且非常窄的间隙会阻止介电流体的流动。为了克服微细电火花加工中介质液流动问题,本研究介绍了两种促进流动的方法:一是采用D形固体电极获得较宽的非对称流道,二是采用O形固体电极加石墨粉混合煤油(GPMK)在相对较宽的放电间隙下流动。流动模拟结果表明两种方法均能促进煤油流动,实验结果也显示出类似的结果。当采用D形截面时,材料去除率增加,但刀具磨损增加。与传统方法相比,对于GPMK,金属去除率提高了64%,相对磨损率降低了73%。通过电压调度,在不牺牲可加工性的前提下,解决了采用O形固体电极GPMK配置进行深孔钻削时出现的精度下降问题。
摘要:固体电解质是全固态电池(ASB)的关键成分。它在电极中需要增强锂电导率,并且可直接用作隔膜。锂填充石榴石材料 Li 7 La 3 Zr 2 O 12(LLZO)具有高锂电导率和对金属锂的化学稳定性,被认为是高能陶瓷 ASB 最有前途的固体电解质材料之一。然而,为了获得高电导率,需要使用钽或铌等稀土元素来稳定高导电立方相。这种稳定性也可以通过高含量的铝来实现,从而降低了 LLZO 的成本,但同时也降低了可加工性和锂电导率。为了找到石榴石基固态电池潜在市场引入的最佳点,可扩展且工业上可用的、具有高加工性和良好导电性的 LLZO 合成是必不可少的。本研究采用了四种不同的合成方法(固相反应(SSR)、溶液辅助固相反应(SASSR)、共沉淀(CP)和喷雾干燥(SD))来合成铝取代的 LLZO(Al:LLZO,Li 6.4 Al 0.2 La 3 Zr 2 O 12 ),并进行了比较,一方面关注电化学性能,另一方面关注可扩展性和环境足迹。这四种方法均成功合成,锂离子电导率为 2.0–3.3 × 10 −4 S/cm。通过使用湿化学合成法,煅烧时间可以从 850 °C 和 1000 °C 下的两个煅烧步骤(20 小时)减少到喷雾干燥法下 1000 °C 下仅 1 小时。我们能够将合成扩大到公斤级,并展示不同合成方法的大规模生产潜力。
摘要 卤化物钙钛矿太阳能电池 (PSC) 已成为下一代光伏技术中最有前途的技术之一,为提高效率、降低成本和快速扩展提供了途径。它们的独特属性——包括高吸收系数、可调带隙、缺陷容忍度和低温可加工性——使开发能够超越传统硅基技术的多功能太阳能设备成为可能。最近的突破推动钙钛矿太阳能电池的能量转换效率 (PCE) 在单结电池中超过 27%,在串联配置中超过 34%。然而,仍然存在重大挑战,特别是在长期稳定性、与铅含量有关的环境问题以及商业部署的可扩展性方面。这篇评论文章讨论了卤化物钙钛矿研究的现状,重点介绍了材料设计、设备架构和制造工艺方面的进步,这些进步推动 PSC 走在可再生能源技术的前沿。我们探索了钙钛矿光伏的潜在应用,从串联太阳能电池到柔性、建筑集成和便携式设备,以及它们在克服硅光伏局限性方面的作用。尽管钙钛矿太阳能电池前景光明,但在实现广泛商业化之前,它必须解决持续存在的挑战,例如现实条件下的稳定性和铅毒性。通过研究最近的进展和确定未来的研究方向,这篇评论文章全面展望了卤化物钙钛矿太阳能电池在塑造全球能源系统未来方面的作用。
中性水对于我们的运营至关重要。在人口增长,城市化和工业化的压力下,水的需求和价格预计将上涨。水泥生产需要用于设备和冷却,发射控制以及在湿过程中准备浆料的水。湿工艺窑技术正在过时,并被更有效的干燥过程所取代。总企业需要水以清洗原材料,并且要准备好混合企业,水是最终产品混凝土的混合物的一部分。用于直接操作的主要用途,高质量的水不是很重要,因为对于大多数过程(原材料准备和冷却),不需要良好的淡水质量。重要的是数量,而不是质量。可以通过收获的回收水或雨水来解决这些水的需求。将来,高质量的水将仍然不重要,因为我们在运营中不需要大量的淡水质量。是间接操作的主要用途,我们选择了中立作为重要的评级,作为考虑对客户和供应商的影响的平衡结果。客户,典型的混凝土混合物约为10%水泥,75%的骨料和15%的水。对于客户而言,混凝土中使用的水质量可能会影响新鲜的混凝土特性,例如设定时间和可加工性以及硬化混凝土的强度和耐用性。因此,某些建筑(例如建筑物,桥梁和机场)需要优质的水。供应商,一些供应商可能需要高质量的淡水(例如机械和设备),但对于我们的批量要求(燃料,原材料和添加剂),不需要足够的水质。考虑到客户和供应商的需求,我们选择了中立。将来,为了间接使用,这可能会改变并变得重要,具体取决于我们的客户和供应商面临的水问题。
高功率电子设备(例如超级计算机)会产生相当大的热量。如果该热量未从设备的内部电路转移,则电路将过热并显着降低设备的寿命和可靠性。由量身定制的热特性所特色的热管理材料用于散发设备电路的热量。钻石(D)和铜(CU)是具有高热电导率(TC)的出色耗散材料。Cu/D复合材料由于其潜在的高TC和可调节的热膨胀系数,可将其用作下一代散热器材料。然而,Cu和C之间存在较弱的亲和力。已证明,Cu和D之间的碳化物形成金属层(例如W,Cr,Ti)已被证明是确保界面化学键合和增强TC的理想选择。在金属基质中集成的钻石颗粒的可加工性差使使用常规技术几乎不可能形成净形。添加剂制造能够制造具有类似于散装的特性的复杂锋利。在这项研究中,我们探索了使用选择性激光熔化作为3D打印技术的高效性能产生CU/D复合材料的可行性。通过光热辐射测量法测量与扫描和透射电子显微镜相互作用的表征相关的热电阻,是在CU和碳之间具有不同碳化物形成金属的多层模型材料上进行的。-这项研究的目的是1)提高对3D打印MMC的基本理解,以及2)通过界面/相间工程开发了CU/D复合材料改进的制造技术。
金属腐蚀已成为全球性问题,它不仅因机械强度下降而引发事故,而且造成巨大的经济损失。缓蚀剂是保护金属材料免受不同介质腐蚀最有效和最经济的策略之一。一般来说,缓蚀剂有无机缓蚀剂、有机缓蚀剂和聚合物缓蚀剂[1-3]。与无机缓蚀剂相比,有机缓蚀剂和聚合物缓蚀剂价格低廉,功效更强。更重要的是,有机缓蚀剂和聚合物缓蚀剂都可以合理设计并易于合成。众所周知,缓蚀剂在金属表面的吸附和相应的黏附性能在缓蚀剂的应用中起着重要作用[4]。因此,吸附基团被广泛应用于缓蚀剂的结构设计中。一些先驱性综述论文已经总结了有机缓蚀剂的研究进展[5,6]。与小分子有机缓蚀剂相比,聚合物缓蚀剂具有以下优势(如图1所示):(i)通过调整重复单元的数量,可以在一个分子中引入更多的吸附基团;(ii)不同的吸附基团可以通过共聚(例如单体A和单体B共聚)集成到同一聚合物中,产生协同吸附效应;(iii)聚合物缓蚀剂的超分子自组装结构可以优化聚合物缓蚀剂的结构,以达到最佳的吸附性能;(iv)聚合物链的柔韧性和移动性提供了可加工性,也可以与无机缓蚀剂形成杂化/复合材料,以达到更好的防腐性能。杂环化合物(如图1所示)由于杂原子的电子中心密集,被认为是优异的缓蚀剂,然而其合成过程通常对环境十分有害。可以通过增加聚合物抑制剂的分子量(换句话说,重复单元的数量)来增加其吸附位点,并且可以成为使用杂环化合物的潜在候选者
锂离子电池对社会产生了巨大影响,最近获得了诺贝尔化学奖 1、2。经过几十年的商业化,锂离子电池正迅速接近其能量密度的理论极限,从而推动了锂金属化学的复兴 3-6。然而,锂金属电池的推广应用受到其循环寿命较短的困扰 4、5。锂金属和电解质之间无法控制的副反应形成化学不稳定、机械易碎的固体电解质界面相 (SEI)。SEI 在循环过程中容易破裂,导致树枝状生长、“死锂”形成和不可逆的锂库存损失 4。电解质工程可以调整 SEI 结构和化学性质,使其成为实现锂金属负极的关键且实用的方法 7、8。对于一种有前景的电解质,必须同时满足几个关键要求 9 – 11 :(1)始终如一的高库仑效率(CE)以最大限度地减少锂的损失,包括在初始循环中,(2)在贫电解质和有限过量锂条件下的功能性以实现最大比能量,(3)对高压正极的氧化稳定性,(4)合理的低盐浓度以实现成本效益和(5)高沸点和不可燃性以确保安全性和可加工性。电解质工程方面的最新研究提高了锂金属电池的循环性,包括盐添加剂优化 12 、溶剂比例修改 13 、 14 和液化气电解质 15 。特别是,高浓度电解质 16、17 和局部高浓度电解质 11、18 – 22 被认为是最有效的方法。高浓度电解质成功减少了 Li + 溶剂化结构中的游离溶剂分子,从而形成了以无机为主的 SEI 和更好的锂循环性能。整个系列
摘要:高熔点(HMP)无铅焊料、混合烧结和瞬态液相烧结(TLPS)是有望替代高铅焊料的新兴无铅替代品。无铅焊料与现有的夹片键合封装高铅焊接工艺完全兼容。混合烧结的好处是它比无铅或高铅焊料具有更高的热导率和电导率。在本研究中,首先通过芯片剪切测试评估了十种材料(包括无铅焊料、混合烧结膏和 TLPS)。在初步材料筛选之后,两种无铅焊料(焊料 1 和 2)、两种混合银烧结膏(烧结 i 和 ii)和一种 TLPS 进行内部样品组装。对于无铅焊料,借助真空回流进行了工艺优化,以降低空洞率。由于银-铜烧结比银-银烧结扩散慢且不均衡,为增强混合银烧结,需进行优化,包括对芯片金属化进行银精加工,对引线框架的夹片和键合区域进行银电镀。在 0 小时封装电气测试中,焊料 1 和烧结 i 通过并送去进行可靠性测试,而焊料 2、烧结 ii 和 TLPS 分别因金属间化合物 (IMC) 开裂、材料渗出和芯片开裂而失败。在可靠性测试中,早期可行性研究定义了热循环 (TC) 1000 次、间歇工作寿命 (IOL) 750 小时和高加速温湿度应力测试 (HAST) 96 小时的基本方案。75 个烧结 i 单元中有 1 个在 TC 1000 次循环中失败,原因是银烧结结构和芯片底部金属化之间的分离。焊料1无缺陷地通过了基本方案,接下来需要将材料的可加工性和夹持强度提高到与高铅焊料相当的水平。
极端环境下下一代增材制造结构合金的机器学习 摘要 金属的性能和可加工性决定了汽车、飞机和建筑物中结构部件的设计和性能。增材制造 (AM) 的出现具有新的加工条件,并且有可能在体素尺寸分辨率下定制合金成分和微观结构,为合金设计开辟了新途径,以实现前所未有的性能。然而,要充分利用所有这些优势,需要转变设计理念并开发针对 AM 量身定制的新数值工具。在本次演讲中,我将介绍如何利用 AM 中的快速凝固和局部熔化,并结合 ICME 技术和机器学习 (ML) 工具,设计出一种创纪录的高强度、耐高温蠕变可打印铝合金,其性能优于传统加工的替代品。我将展示所提出的混合框架如何为发现下一代结构金属材料提供新的视角,从而显著改变从航空航天、建筑、基础设施、汽车和能源部门到微电子设备和生物医学植入物的工业应用。个人简介 S. Mohadeseh Taheri-Mousavi 于 2022 年 9 月加入卡内基梅隆大学担任助理教授,此前她曾在麻省理工学院机械工程系和材料科学与工程系联合担任博士后研究员。在此之前,她是布朗大学的博士后研究员。她在瑞士洛桑联邦理工学院获得博士学位,在伊朗沙里夫理工大学获得理学学士和理学硕士学位。她在布朗大学和麻省理工学院进行博士后研究期间获得了瑞士国家科学基金会早期和高级奖学金。 Taheri-Mousavi 小组结合机器学习技术开发了新型多尺度数值和分析框架,以发现由各种制造技术(尤其是增材制造)和在极端环境条件下生产的下一代结构合金。我们的材料信息学框架还可以指导实验以高效和智能的方式进行。