培训深层神经网络以最大程度地提高目标,已成为过去十年来成功机器学习的标准配方。如果目标目标是可区分的,则可以通过有监督的学习对这些网络进行操作。但是,许多有趣的问题并非如此。共同的目标,例如联合(IOU)的交集以及双语评估研究(BLEU)分数或奖励,无法通过有监督的学习来优化。一个常见的解决方法是定义可区分的替代损失,从而导致相对于实际目标的次优解决方案。强化学习(RL)已成为一种有前途的替代方法,用于优化深度神经网络,以最大程度地提高非差异性目标。示例包括通过人类反馈,代码生成,对象检测或控制问题对齐大语言模型。这使得RL技术与较大的机器学习受众相关。然而,由于大量方法以及通常高度理论上的表现,该主题是在很密集的时间。该专着采用了一种与经典RL教科书不同的替代方法。而不是专注于表格
六月研究助理。2020年 - 2024年8月•大型语言模型(LLMS)内的长期杂项机器人学习的发展状态空间建模,LLMS在维护州跟踪的同时执行计划和推理。•体现的AI:提出的diff -Control,一种将控制网络从图像生成到机器人动作的范围的动作扩散策略。[C7]•使用注意机制和可区分的过滤创建了一个多模式学习框架(𝛼 -MDF),该滤波器在潜在空间中进行多种模式的状态估计。[C5]•开发了可区分的集合Kalman过滤器(DENKF)框架,其中包含用于机器人学习的算法先验,即从观察值中学习系统dy -namics,以及从高维空间中的学习表示形式。[C4]•用智能手表部署了无处不在的机器人控制任务的智能滤波框架,即,电视,无人机驾驶。[C6]
从原始脑电信号中学习可区分的特征对于准确分类运动想象 (MI) 任务至关重要。为了结合脑电源之间的空间关系,我们开发了一个基于脑电图的特征集。在此图中,脑电通道表示节点,功率谱密度 (PSD) 特征定义其属性,边缘保留空间信息。我们设计了一个基于脑电图的图形自注意网络 (EGSAN) 来学习脑电图的低维嵌入向量,可将其用作运动想象任务分类的可区分特征。我们在两个公开可用的 MI 脑电数据集上评估了我们的 EGSAN 模型,每个数据集包含不同类型的运动想象任务。我们的实验表明,我们提出的模型有效地从脑电图中提取了可区分的特征,与现有的最先进方法相比,分类准确率明显更高。关键词:运动想象 (MI)、脑电图 (EEG)、特征学习、图形表示、自注意
培训深层神经网络以最大程度地提高目标,已成为过去十年来成功机器学习的标准配方。如果目标目标是可区分的,则可以通过有监督的学习对这些网络进行操作。但是,许多有趣的问题并非如此。共同的目标,例如联合(IOU)的交集以及双语评估研究(BLEU)分数或奖励,无法通过有监督的学习来优化。一个常见的解决方法是定义可区分的替代损失,从而导致相对于实际目标的次优解决方案。强化学习(RL)已成为一种有前途的替代方法,用于优化深度神经网络,以最大程度地提高非差异性目标。示例包括通过人类反馈,代码生成,对象检测或控制问题对齐大语言模型。这使得RL技术与较大的机器学习受众相关。然而,由于大量方法以及通常高度理论上的表现,该主题是在很密集的时间。该专着采用了一种与经典RL教科书不同的替代方法。而不是专注于表格
定制成像级镜头的原型制作和少量生产是困难且昂贵的,尤其是对于更复杂的非球面形状而言。流体形状最近被提议作为一种潜在的解决方案:它利用液体之间界面的原子水平平滑度,其中界面的形状可以通过边界条件,浮力控制和其他物理参数仔细控制。如果一种液体是树脂,则可以通过固化来“冷冻”其形状,从而产生固体光学元素。虽然流体形状是一个有前途的途径,但该方法产生的形状空间目前仅以偏微分方程的形式描述,这些方程与现有镜头设计过程不相容。更重要的是,我们证明现有的PDE不准确,不准确。在这项工作中,我们开发了由流体成型技术产生的形状太空镜片的新表述。它克服了以前模型的不准确性,通过可区分的实现,可以基于可区分的射线跟踪将最新的端到端光学设计管道集成到最新的端到端光学设计管道中。我们通过模拟以及初始物理原型广泛评估模型和设计管道。
数据模型是一个相对简单的表示,通常是图形的,对更复杂的现实对象事件的抽象更为抽象,数据模型代表数据结构及其特征,关系,约束,转换以及其他目的,目的是支持特定问题域。数据模型数据模型的重要性可以促进设计人员,应用程序程序员和最终用户之间的互动,良好的数据模型甚至可以更快地提高对开发数据库设计的组织的了解。数据模型基本构建块实体:是否有任何东西(一个人,一个地方,事物或事件),以收集和存储哪些数据。一个实体代表现实世界中一种特定类型的对象。实体是“可区分的”,每个实体的发生都是独特而独特的。例如,客户实体将有许多可区分的客户发生,例如艾哈迈德(Ahmed),阿里(Ali)等。属性:是实体的特征。例如,客户实体将通过诸如客户姓氏,客户名称,其等效的文件系统关系中的字段等属性来描述:描述实体之间的关联,例如,客户和代理之间存在的关系可以描述如下:代理可以为许多客户服务,并且每个客户都可以由一个代理服务。数据模型使用三种类型的关系:
培训深层神经网络以最大化目标目标已成为过去十年中成功的机器学习的标准配方。如果目标目标是可区分的,则可以通过监督学习来优化这些网络。对于许多有趣的问题,事实并非如此。共同的目标,例如联合(IOU)的交集,双语评估研究(BLEU)得分或奖励,无法通过超级学习的学习来优化。一个常见的解决方法是定义可区分的替代损失,从而导致相对于实际目标的次优解决方案。强化学习(RL)已成为一种有希望的替代方法,用于优化深层神经网络,以最大程度地提高非微分目标。示例包括通过人类反馈,代码生成,对象检测或控制问题对齐大语言模型。这使得RL技术与较大的机器学习受众相关。然而,由于大量方法以及通常非常理论上的呈现,该主题是在接近的时间密集。在此简介中,我们采用另一种方法,不同于经典的加强学习教科书。我们不关注表格问题,而是引入强化学习作为监督学习的概括,我们首先将其应用于非差异性目标,后来又适用于时间问题。在阅读本教程后,读者只有受监督学习的基本知识,读者将能够理解最先进的深度RL算法(例如近端策略优化(PPO))。