化学性侵犯转移性结直肠癌(MCRC)的患者预后不佳。使用程序性细胞死亡蛋白1(PD-1)/程序性细胞死亡配体1(PD-L1)抑制剂的应用鼓励改善MCRC微卫星不稳定性高(MSI-H)/不匹配修复维修剂(DMMR)的生存。不幸的是,对于MCRC而言,微卫星稳定(MSS)/优先不匹配修复(PMMR)无效,占MCRC的95%。放射疗法可以通过直接杀死肿瘤细胞并诱导阳性免疫活性来促进局部控制,这可能有助于协同进行免疫疗法。我们介绍了一名先进的MSS/PMMR MCRC患者,该患者在第一线化学疗法,姑息手术和二线化学疗法结合靶向疗法后患有进行性疾病(PD)。然后,患者接受了PD-1抑制剂的疗法,结合了放射疗法和粒细胞 - 巨噬细胞刺激因子(GM-CSF)。根据实体瘤版本1.1(recist1.1)的反应评估标准,该患者在三年后与无进展生存期(PFS)的三重疗法后显示了完全反应(CR),迄今为止已有2年以上的时间。患者除疲劳(1级)外没有其他明显的不良反应。三合一疗法为转移性化学难治性MSS/PMMR MCRC患者提供了有希望的策略。
例如,如果家庭安装了恒温器,当电价上涨或下跌(财政刺激)时,恒温器会自动改变供暖温度(智能自动化),这样家庭就可以省钱。或者,如果他们收到一条消息告知他们电价何时非常高,他们可以将此视为一种友好的提醒,以节省更多(基于信息的刺激)。关键是要找出这三种方法的有效性。为了理解这一点,我们的评论深入研究了能源经济学文献,并特别关注自 2007 年以来发表的论文,这些论文展示了旨在让家庭在特定时间段(通常是一天中的特定时段(高峰))减少电力消耗的实验结果,使用上述三种方法中的一种或多种。在此过程中,我们提取了 150 个平均处理效果,它们表示这些特定时间段内电力消耗的百分比下降。
由于地形驱动的动力学在(次)公里(例如Bora风)和复杂的海洋测深的测定法上引起的,其中包括许多通道,凹陷和山脊,在半封闭的Adriatic区域内的大气 - 海洋动力学在可用的环境区域模型中无法很好地复制。因此,特定开发了亚得里亚海和海岸(Adrisc)公里大气层模型,以准确评估历史(1987-2017)和远处(2070-2100)条件下的亚得里亚海气候危害。在这项研究中,我们分析了气候变化对预计的亚得利亚趋势,可变性和极端事件的影响。在大气中,我们的结果主要遵循已经发表的文献:强烈的土地对比,干旱增加和极端的降雨事件以及沿海地区的风速下降。在海洋中,表面和中等温度的强度和恒定升高与盐度降低有关,除非夏季盐度在沿海地区上升的表面。在底部和海洋循环中,我们的结果表现出强烈的对比。在沿海地区,底温度上升,底部盐度的速度降低了,而当前速度的变化可以忽略不计。在亚得里亚海最深的部分,负底温度趋势会导致比表面慢2.5°C慢,而底部盐度增加。此外,洋流在表面和中间层中加速,但在底部减速。这些海洋的结果表明,北部亚得里亚海中茂密的水的形成减少,南部亚得里亚海气旋回旋的强化和收缩,以及在代码深处的最深部分的垂直地层加强可能与亚种式水水和亚法利亚水平的变化相关的垂直地层。鉴于这些变化对亚得里亚海沿海社区和海洋生物的潜在影响,这项研究强调了增加亚得里亚海地区正在进行的千年规模建模工作,旨在实施政策和适应计划,以更好地针对该规范区域预测的当地气候变化量身定制。鉴于这些变化对亚得里亚海沿海社区和海洋生物的潜在影响,这项研究强调了增加亚得里亚海地区正在进行的千年规模建模工作,旨在实施政策和适应计划,以更好地针对该规范区域预测的当地气候变化量身定制。
本文对海浪能驱动的反渗透进行了分析。市售的海水淡化系统通过 DC/AC 转换器连接到可变 DC 电源,并改变输入电压以模拟可再生能源系统的响应。具体而言,使用了 2015 年肯尼亚基利海的波浪数据。波浪资源变化会导致波浪能转换器的估计功率输出以及波浪能驱动的海水淡化系统的估计淡水产量发生变化。对于基利海,研究了最多三个用于海水淡化的波浪能转换器。此外,还提出了一种包括太阳能和波浪能的混合系统。实验表明,反渗透海水淡化系统可以在低于额定值的功率水平下运行,但淡水流量较低。结论是,波浪能或波浪能与光伏系统相结合,可被视为海水淡化的电源,带或不带电池储存。
在本文中,我们提出了一种新型的可变形神经关节网络 (DNA-Net),这是一种基于无模板学习的方法,用于从单个 RGB-D 序列进行动态 3D 人体重建。我们提出的 DNA-Net 包括一个神经关节预测网络 (NAP-Net),它能够通过学习预测一组关节骨骼来跟随输入序列中人体的运动,从而表示人体的非刚性运动。此外,DNA-Net 还包括有符号距离场网络 (SDF-Net) 和外观网络 (Color-Net),它们利用强大的神经隐式函数来建模 3D 几何和外观。最后,为了避免像以前的相关工作那样依赖外部光流估计器来获得变形线索,我们提出了一种新的训练损失,即基于易到难几何的损失,这是一种简单的策略,它继承了倒角距离的优点来实现良好的变形引导,同时仍然避免了其对局部不匹配敏感性的限制。DNA-Net 以自监督的方式直接在输入序列上进行端到端训练,以获得输入对象的 3D 重建。DeepDeform 数据集视频上的定量结果表明,DNA-Net 的表现优于相关的最先进方法,并且有足够的差距,定性结果还证明我们的方法可以高保真度和细节重建人体形状。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年3月5日。 https://doi.org/10.1101/2025.03.04.641478 doi:Biorxiv Preprint
摘要在本文中,MyFlex-ϵ是一个配备轻巧可调节的机制的ESR脚假体,允许在矢状平面中改变其刚度,并采用系统的方法来计算其旋转速度曲线。通过使用二维(2D)有限元(Fe)模型进行数值进行的实验设计,实验校准的几何参数,其变异改变了最初以不变刚度的矢状平面刚度的变化,以不可差的刚度设计,myflex-δ。构建机理并将其集成到myFlex-δ中以获得myFlex-ϵ,通过等效的测试,确定了后者的位移曲线曲线,确定了与ISO 10328中指定的静态测试的测试。基于实验结果,构建和校准了myFlex- ϵ的2D FE模型,以确定其矢状平面中的旋转态曲线。比较最符合的设置获得的旋转曲线与最僵硬的设置,固体变化为119%,122%,138%和162%,分别为 - 5°和 - 2.5◦和 - 2.5°,以及反向反射的角度,分别为7.5°和15°。
动态光学镜头镜片是透射自适应光学器件,旨在轻松整合到任何光学系统中以校正光学畸变。这些镜头的设计使用10、16或25mm透明的光圈,以覆盖常见的学生尺寸和M32 x 0.75安装线,可以通过使用线程适配器来适应常见的客观螺纹类型。它们可以使用波前传感器或自动软件校正系统进行封闭环控制,以进行像差校正。动态光学变形镜头也可以与低功率激光器一起用于梁的塑形,例如将高斯光束塑造为椭圆形或方形束轮廓或立方相。这些镜片是光学相干断层扫描(OCT),共聚焦显微镜,2光子显微镜和明亮场显微镜的畸变校正的理想选择,以提高图像质量。
动态光学镜头镜片是透射自适应光学器件,旨在轻松整合到任何光学系统中以校正光学畸变。这些镜头的设计使用10、16或25mm透明的光圈,以覆盖常见的学生尺寸和M32 x 0.75安装线,可以通过使用线程适配器来适应常见的客观螺纹类型。它们可以使用波前传感器或自动软件校正系统进行封闭环控制,以进行像差校正。动态光学变形镜头也可以与低功率激光器一起用于梁的塑形,例如将高斯光束塑造为椭圆形或方形束轮廓或立方相。这些镜片是光学相干断层扫描(OCT),共聚焦显微镜,2光子显微镜和明亮场显微镜的畸变校正的理想选择,以提高图像质量。
利益冲突作者宣布没有利益冲突。作者贡献SB和GD为论文开发了思想和概念。SB进行了实验,数据分析并领导论文的撰写。两位作者都为草稿做出了巨大贡献,并获得了发表的最终批准。致谢我们感谢同事,尤其是Natasha Tigreros博士的评论和讨论,改善了该项目的方向。我们感谢亚利桑那大学的毕业生和专业学生会项目资助。数据可访问性数据和软件代码可在Dryad上找到:doi:10.5061/dryad.b8gtht7j6