我们提出了一个能够实现现实视频综合的模型,给定一系列文本提示。由于计算成本,数量有限的高质量文本视频数据和视频长度的变化,因此从文本中生成视频尤其具有挑战性。为了解决这些问题,我们介绍了一种新的模型,以学习视频表示,该模型将视频压缩为一小部分离散令牌。这个令牌仪会及时使用因果关注,这使其可以与可变长度视频一起使用。为了从文本生成视频令牌,我们使用的是在预先计算的文本令牌上进行的双向蒙版变压器。随后对生成的视频令牌进行了解密以创建实际的视频。为了解决数据问题,我们演示了大量图像文本对的联合培训以及少量的视频文本示例如何导致概括超出视频数据集中的可用内容。与以前的视频生成方法相比,Phanaki可以生成以一系列提示为条件的任意长视频(即时间变量文本或故事)在开放域中。据我们所知,这是第一次研究从开放域时间变量提示中生成视频的论文。此外,与每个框架基线相结合,所提出的视频编码器计算每个视频的代币较少,但会导致更好的时空一致性。
例如,太阳能电池板覆盖的土地通常不能在实际意义上用于种植农作物,因为它几乎没有阳光。此外,需要太阳能电池板下的土地来容纳支撑面板所需的密集的基础设施。在风力涡轮机周围的土地可用于种植农作物和放牧,尽管其利用受涡轮机的存在和支持基础设施的影响。这样的基础设施包括涡轮机(包括地下电源线),存储设施和主要能源网络之间的电力线纵横交错,例如澳大利亚东部的国家电力市场和西澳大利亚州西南互连系统。
披露材料。本材料中包含的信息仅仅是信息丰富的信息,而不是购买或出售金融和资本市场上任何资产的任何建议。AZ任务对基于本材料中包含的信息的投资决策不承担任何责任。AZ Quest Investimentos Ltda。不出售或分发投资基金配额或任何其他金融资产。必须在任何投资决定之前阅读资金法规。过去获得的盈利能力并不代表未来结果的保证。所披露的盈利能力不是税收网。AZ Quest Investments LTDA管理的所有投资基金。使用衍生策略作为其投资政策不可或缺的一部分。采用这种策略,可能会给股东带来重大财产损失。
飞行员-飞机布局是较复杂的人机技术系统之一 [10, 30, 32, 43]。飞行员犯错的主要原因是在短时间内接收大量信息 [14, 15, 29, 30]。飞行员工作的一个特点是将注意力转移到仪表上,并同时从传入信号中插入信息 [6, 16, 29, 43]。这会带来许多风险,这些风险可能导致一系列危险事件,从而对机组人员和乘客的健康和生命构成威胁 [10, 30, 38]。合适的座舱设备可优化操作员和机器之间的功能划分,将危险降到最低。座舱应能够使遥控器与机器正确适配,反之亦然 [41, 43]。飞机飞行员或无人机操作员根据收到的情景信息采取行动 [5, 15, 32]。有了充分的信息,他就能正确地完成工作。当接收信号受到干扰或完全没有信号时,问题就开始了。这可能与机载仪器的读数有关,但也与直接从环境中接收的信息有关。2014 年 3 月 22 日,从 Kaniów EPKW 飞往 Mielec EPML 机场的一次紧急降落就是一个例子。由于着陆需要
摘要 —TDFA 波段(2 µ m 波段)已被视为下一代光通信和计算的有前途的光学窗口。吸收调制是基本的可重构操作之一,对于大规模光子集成电路至关重要。然而,在 TDFA 波段探索吸收调制的努力很少。在这项工作中,基于绝缘体上硅 (SOI) 平台设计和制造了用于 TDFA 波段波长的可变光衰减器 (VOA)。通过将 200 µ m 的短 PIN 结长度嵌入波导,制造的 VOA 在 2.2 V 时表现出 40.49 dB 的高调制深度,并具有由等离子体色散效应引起的快速响应时间 (10 ns)。结合法布里-珀罗腔效应和硅的等离子体色散效应,衰减器可实现超过 50 dB 的最大衰减。这些结果促进了2μm波段硅光子集成的发展,并有望促进光子衰减器在串扰抑制、光调制和光通道均衡方面的应用。
在许多应用中,包括 RF 设计的 VGA/PGA,具有 dB 线性(dB 尺度上的线性关系)增益特性的放大器是首选,因为它在 AGC 环路中使用时可以实现恒定的稳定时间 [13–15]。这种关系在 BJT 技术中很容易实现,其中增益与控制信号呈指数关系 [16–18]。对于 MOS 器件,尽管指数关系存在于亚阈值区域并可提供较宽的增益控制范围 [19],但饱和区有利于降低噪声并增加带宽 [20],并且由于后者的平方关系,需要指数 VI 转换电路来实现指数增益控制关系 [21]。实现指数转换器的一些方法采用 BiCMOS 技术[22–24]、寄生双极晶体管[20]或使用提供伪指数函数近似的 CMOS 电路[25,26]。
Vision Transformers(VIT)已成为代表学习中最新的架构,利用自我注意的机制在各种任务中脱颖而出。vits将图像分为固定尺寸的补丁,将其限制为预定义的大小,并需要进行预处理步骤,例如调整大小,填充或裁剪。这在医学成像中构成了挑战,尤其是在肿瘤等不规则形状的结构中。一个固定的边界盒子量产生的输入图像具有高度可变的前景与地面比率。进行医学图像可以降低信息并引入人工制品,从而影响诊断。因此,对感兴趣区域的裁缝量化作物可以增强特征代表能力。此外,大图像在计算上是昂贵的,尺寸较小,风险信息损失,表现出计算准确性的权衡。我们提出了Varivit,这是一种改进的VIT模型,该模型制定了用于处理可变图像尺寸的同时保持连贯的贴片大小。varivit采用新颖的位置嵌入调整大小方案,用于可变数量的斑块。我们还将在变量内实施一种新的批处理策略,以降低计算复杂性,从而导致更快的培训和推理时间。在我们对两个3D脑MRI数据集的评估中,变量超过了胶质瘤基因型预测和脑肿瘤分类中的香草vits和重新连接。它的F1得分分别为75.5%和76.3%,学习了更多的判别特征。与常规体系结构相比,我们提出的批处理策略将计算时间最多减少了30%。这些发现强调了图像表示学习中变量的功效。关键字:视觉变压器,建筑,表示,肿瘤分类
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年7月8日发布。 https://doi.org/10.1101/2024.07.04.602063 doi:Biorxiv Preprint
在此案例研究中,采用了大型太阳能农场模型1,描述了天气变量与典型装置的发电机输出之间的关系。风场“电力转换模型”是由Aemo开发的,用于此案例研究,该案例使用了观察到的众多操作风电场的性能(图2)。太阳能农场模型描述了不同水平的全球水平辐照度(GHI),直接正常辐照度(DNI)和风速在10 m处的归一化交流功率变化。风电场模型将输出描述为在150 m和温度下风速的函数。太阳能或风力的输出被标准化(从0到1的比例描述),因为实际输出将取决于面板的大小,品牌和数量。
摘要 — 提出了一种可变阈值电压保持器电路技术,用于同时降低多米诺逻辑电路的功耗和提高速度。在电路运行期间,保持器晶体管的阈值电压会动态修改,以减少争用电流,而不会牺牲抗噪性。与标准多米诺 (SD) 逻辑电路相比,可变阈值电压保持器电路技术可将电路评估速度提高高达 60%,同时将功耗降低 35%。与 SD 电路相比,使用所提出的技术可以增加保持器尺寸,同时保持相同的延迟或功率特性。与具有相同评估延迟特性的 SD 电路相比,所提出的多米诺逻辑电路技术可提供高 14% 的抗噪性。与具有相同保持器尺寸的 SD 电路相比,还提出了对保持器晶体管进行正向体偏置以提高抗噪性。结果表明,通过应用正向和反向体偏置保持电路技术,可以同时提高多米诺逻辑电路的抗噪能力和评估速度。
