欧盟委员会已根据《巴黎协定》宣布了一项“欧洲绿色协议”,以脱碳并增加可再生能源。这项研究研究了具有生物质燃料的热量和电力的地区供暖系统,电力驱动的压缩热泵和坑热能储藏,可以在未来的瑞典电力系统中有助于电力平衡能力,并具有可变可变的可再生电力生产的较高份额。地区的热量生产在不常规的控制上主要是为了提供电力平衡需求,如果不直接提供给地区供暖用户,则将共同产生的热量存储。还研究了这对生物质需求的影响。模拟是在瑞典电力市场的一部分的汇总水平上进行的。结果表明,地区供暖系统有可能将可变峰值可再生能力降低多达52%。所有功率盈余都可以用于热泵中的热量产生。需要供热需求的17 E的供热能力。根据可再生能源发电技术的组合,与常规的热量产生相比,控制功率平衡的地区供暖生产的燃料使用率高11%。例如,与相反的关系相比,与风能相关的太阳能相对于风能减少了燃料的使用程度。©2021作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要 - 在机器人运动过程中以不同速度识别基础表面对于安全有效的机器人导航很重要。这项工作旨在通过在每脚下方固定的力传感器来识别多个室内表面,同时以不同的速度导航,从而增强了双子机器人的感知能力。通过将实时多对象支持向量机(SVM)与有效的时域功能相结合,提出了一种机器人的准确但成本较固的表面标识系统。在这种情况下,研究了四个有希望的手工制作的时域特征,其中均方根(RMS)功能被证明超过了其他三个功能。可以通过分别以两个不同的步行速度应用RMS来实现十倍SVM交叉验证中95.99%和98.16%的平均平均精度(地图)。具有较高的计算效率可以实现高分类精度,因此可以在诸如Arduino或Jetson Nano之类的低成本平台上进行系统部署,这使我们的方法适合在各种步行速度之间进行广泛应用。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
图1。VRF热泵系统的亮点与热恢复[2]在同一建筑物设计上的两层和三管系统之间的不同管道布局[3]。3图3。Product data from Ventacity Energy/Heat Recovery System ........................................................ 6 Figure 4.DOAS温度控制方案来自Ashrae DoAs设计指南........ 7图5。基线模型中不同HVAC系统类型的分布...................................................................................................Coverage of applicable buildings for the upgrade ....................................................................... 14 Figure 7.VRF DOAS configuration represented in this upgrade ............................................................... 14 Figure 8.Single curve approach versus dual curve approach (COP based on compressor and outdoor unit fan power only) ...................................................................................................................... 17 Figure 9.VRF室外单位性能比较:加热能力和COP Comp&Fan,Design ....................... 18图10。VRF室外单位性能比较:冷却能力和COP Comp&Fan,设计...................................................................................................................................................................................................................................................................Cooling EIR (or COP) curve derivation and validation ............................................................ 20 Figure 12.Rated COP derivation based on sized capacities ....................................................................... 22 Figure 13.doas温度设定点建议形式ASHRAE DOAS设计指南........ 25图14。Comparison of annual site energy consumption between the ComStock baseline and the upgrade scenario .................................................................................................................... 35 Figure 15.Comstock基线和升级方案的温室气体排放比较... 36图16。Percent site energy savings distribution for ComStock models with the upgrade measure applied by end use and fuel type ............................................................................................ 37 Figure 17.Site EUI savings distribution for ComStock models with the upgrade measure applied by end use and fuel type .................................................................................................................... 38 Figure 18.Comparison of the ComStock baseline and the upgrade scenario in terms of peak demand change .................................................................................................................................... 40 Figure 19.VRF额定和设计COP Comp&Fan的分布,设计......................................................................................................................................................... 41图20。Distribution of VRF annual average COP comp&fan,operating ............................................................ 42 Figure 21.用电阻加热的VRF补充加热的分数分布............................................................................................................................... 42图22.Distribution of annual average heating COP system,operating ........................................................... 43 Figure 23.Distribution of unmet hours to heating and cooling setpoints ................................................... 43 Figure 24.Distribution of VRF piping configurations................................................................................ 44 Figure 25.Distribution of VRF indoor and outdoor unit counts ................................................................. 45 Figure A-1.Site annual natural gas consumption of the ComStock baseline and the measure scenario by census division ....................................................................................................................... 49 Figure A-2.Site annual natural gas consumption of the ComStock baseline and the measure scenario by building type .......................................................................................................................... 49 Figure A-3.Site annual electricity consumption of the ComStock baseline and the measure scenario by building type .......................................................................................................................... 50 Figure A-4.Site annual electricity consumption of the ComStock baseline and the measure scenario by census division ....................................................................................................................... 50
电气阳离子的运输是达到气候目标的关键要素。2,5直接电气和电池电动汽车(BEV)在某些运输部门(例如在公路乘客运输中)很重要,可再生气态和液态燃料用作桥接和互补的解决方案。6,7在重型货运8和海上9运输和航空中,10个完整的电气充满了挑战,因此需要燃料的燃烧发动机仍被视为长期选择。存在两个主要的可再生燃料选项:生物燃料和电露。生物燃料是由农作物或生物量残留物生产的,是当今最常见的选择。但是,资源基础有限为11,12,如果通过能源作物产生,人们担心潜在的负面环境影响13,14,以及竞争与食品生产的可耕地。15,16这限制了能量使用的生物量潜力17,18,并以实质性的不确定性和风险使可持续性评估复杂化。19,20
摘要 - 优化人工神经网络的计算效率对于资源受限的平台(例如自主驾驶系统)至关重要。为了应对这一挑战,我们提出了一个轻巧的上下文感知网络(LCNET),该网络加速了语义细分,同时在本文中保持了推理速度和细分精度之间的有利权衡。提出的LCNET引入了部分通道转换(PCT)策略,以最大程度地减少基本单元的计算潜伏期和硬件要求。在PCT块中,三个分支的上下文聚合(TCA)模块扩展了功能接收场,从而捕获多尺度上下文信息。此外,双重注意引导的解码器(DD)恢复了空间细节并增强了像素预测的认可。在三个基准上进行的广泛实验证明了拟议的LCNET模型的有效性和效率。值得注意的是,一个较小的LCNET 3_7仅获得了73.8%MIOU,只有51万个参数,分别使用单个RTX 3090 GPU和Jetson Xavier NX,其令人印象深刻的推理速度约为142.5 fps和〜9 fps。更准确的LCNET 3_11版本可以在约117 fps的推理速度下以相同的分辨率达到75.8%MIOU,在城市景观上约为117 fps推理速度。可以在较小的图像分辨率下实现更快的推理速度。LCNET在移动应用程序方案 - iOS的计算效率和预测能力之间取得了巨大的平衡。代码可在https://github.com/lztjy/lcnet上找到。
- 所有N-1限制,成千上万的受监控分支和意外事件 - 网络和市场对市场流程 - 迭代负载流,带有边际损失更新的迭代负载流量 - 辅助服务 - 辅助服务 - 系统范围内和区域 - 优化 - 所有DA单元参数 - 所有的交易 - 提交的交易 - 包括大量的跨度bid,包括大量的运行
需要大量的创新技术来实现可持续发展目标(SDGS)(Frankl 2020 I)。实现最不可能的可靠和可持续的能源系统是一个全球挑战。可再生能源对于所有能源部门的关键,直到最新世纪中期(到2050年2021年II)才能实现气候中性能源供应。在有利的政策环境,市场机会和大量成本降低的驱动下,可变的可再生能源(VRE)等可变的可再生能源(VRE)等越来越重要的能源是越来越重要的能源来扩展能源访问并基于清洁能源启用电气化。这实质上改变了电力系统的结构和操作,但也影响了热量和运输部门的可再生能源。
总统拉马福萨(Ramaphosa)在他的国家讲话中说:“我们将继续过渡到我们国家可以负担得起的,并以确保能源安全的方式过渡到低碳经济”。我们应该脱碳的速度将利益相关者划分。提倡较慢的速度争论可变的基于可再生能源的系统不是能源安全的,并且在对煤炭工人及其家属的生计的影响方面的发展成本太高。提倡更快的过渡速度,认为可变的可再生能源系统是安全的,煤炭工人需要通过公正的过渡需要保护,并且未能迅速过渡将对贸易,获得资本,空气质量和人类健康以及从气候变化(包括水和食品安全)产生负面影响。