HHV-6 = 疱疹病毒 6 HIV = 人类免疫缺陷病毒 HLH = 噬血细胞性淋巴组织细胞增生症 1 调整肾功能 2 如果用于预防,则无需使用负荷剂量的抗真菌药物 3 对于患有白血病、近期同种异体干细胞移植、既往霉菌感染史、中性粒细胞减少症持续 ≥ 14 天、3 级或 4 级 CRS/ICANS 并且接受 ≥ 3 天皮质类固醇治疗的高危患者,或患有噬血细胞性淋巴组织细胞增生症 (HLH) 的患者,建议使用泊沙康唑预防(见附录 N)。如果使用皮质类固醇,在完成皮质类固醇治疗后,应继续使用泊沙康唑至少 1 个月。如果 ANC < 1 K/微升,请不要停止泊沙康唑预防。如果患者之前曾服用过伏立康唑或艾沙康唑,或者泊沙康唑不在保险范围内,则可以使用这些药物。如果泊沙康唑、伏立康唑、艾沙康唑或棘白菌素有禁忌症或存在负担能力/获取问题,则使用氟康唑进行预防,并考虑在使用皮质类固醇期间每周至少进行一次曲霉菌抗原检测,并在完成皮质类固醇治疗后至少一个月进行检测。不符合高风险定义的患者将被视为真菌感染风险较低,并接受上述预防措施。4 IEC 相关暴发性噬血细胞性淋巴组织细胞增生症 (HLH) 或巨噬细胞活化综合征 (MAS) 的诊断标准,请参阅附录 N
摘要 质子泵抑制剂(PPI)是世界上使用最广泛的药物。目前,市场上有六种PPI:右兰索拉唑、埃索美拉唑、兰索拉唑、泮托拉唑、奥美拉唑和雷贝拉唑。它们的半衰期约为 1 小时,并通过同工型 CYP2C19 和 CYP3A4 在肝脏中进行生物转化。目的是对 IBPS 的药代动力学、副作用和功效进行文献综述。该方法基于综合评价,考虑了 Medline、Lilacs、Scielo、Pubmed 和 Google Scholar 数据库,以及 2011 年至 2019 年期间发表的英文、葡萄牙文和西班牙文文章。PPI 是广泛用于治疗胃酸分泌疾病的药物,具有良好的抑制酸分泌的潜力,酸分泌可能需要长达 3 到 4 天的时间。 PPI 通常耐受性良好,最常见的副作用是头痛、腹痛、恶心和腹泻。 PPI 比 H2 受体拮抗剂产生更有效且更持久的酸抑制作用,并且可以将胃液 pH 值维持在 4 以上长达 16 至 18 小时/天。从目前的情况来看,PPI 已成为治疗消化道疾病的首选药物。它们通常被广泛接受,服用该药物 1 年或更长时间的患者应小心。关键词:质子泵抑制剂;不良反应;效力。摘要 质子泵抑制剂(PPI)是世界上使用最广泛的药物。目前,市场上有六种PPI:右兰索拉唑、埃索美拉唑、兰索拉唑、泮托拉唑、奥美拉唑和雷贝拉唑。它们的半衰期约为 1 小时,并通过 CYP2C19 和 CYP3A4 同工酶在肝脏中进行生物转化。目的是对 IBPS 的药代动力学、副作用和有效性进行文献综述。该方法基于综合评价,考虑了 Medline、Lilacs、Scielo、Pubmed 和 Google Scholar 数据库以及 2011 年至 2019 年发表的英文、葡萄牙语和西班牙语文章。PPI 是用于治疗胃酸分泌疾病的研磨药物,具有良好的抑制酸分泌的潜力,酸分泌可能需要 3 到 4 天。 PPI 通常耐受性良好,最常见的副作用是头痛、腹痛、恶心和腹泻。 PPI 比 H2 受体拮抗剂产生更有效且更持久的酸抑制作用,并且可以将胃液 pH 值维持在 4 以上长达 16 至 18 小时/天。从所呈现的背景下,PPI 是治疗肽类疾病的首选药物。它们通常被广泛接受,服用该药物 1 年或更长时间的患者应小心。关键词:质子泵抑制剂;不良反应;效率。摘要 质子泵抑制剂(PPI)是世界上使用最广泛的药物。目前,市场上有六种PPI:右兰索拉唑、埃索美拉唑、兰索拉唑、泮托拉唑、奥美拉唑和雷贝拉唑。其半衰期约为 1 小时,通过 CYP2C19 和 CYP3A4 同工型在肝脏中进行生物转化。目的是对 IBPS 的药代动力学、副作用和有效性进行文献综述。该方法基于综合评价,考虑了 Medline、Lilacs、Scielo、Pubmed 和 Google Scholar 数据库,以及 2011 年至 2019 年期间发表的英文、葡萄牙语和西班牙语文章。PPI 是用于治疗胃酸分泌疾病的研磨药物,具有良好的抑制酸分泌的潜力,酸分泌可能需要 3 到 4 天。 PPI 通常耐受性良好,最常见的副作用是头痛、腹痛、恶心和腹泻。 PPI 产生
摘要 引言 侵袭性曲霉病是血液病患者发病和死亡的最重要原因。目前,伏立康唑是侵袭性真菌病的一线治疗药物。伏立康唑的药代动力学个体间差异取决于遗传因素。伏立康唑总代谢的 70%–75% 参与 CYP450,主要是 CYP3A4 和 CYP2C19,其余 25%–30% 的代谢由单加氧酶黄素进行。CYP2C19 单核苷酸多态性可以解释伏立康唑代谢中 50%–55% 的变异性。材料和方法主要目的是比较预先伏立康唑基因分型与常规实践的效率。主要结果是第五天血清伏立康唑是否在治疗范围内。次要结果是与伏立康唑相关的治疗失败和首次给药后 90 天内不良事件的综合变量。总共将招募 146 名可能接受伏立康唑治疗的侵袭性曲霉病风险患者,并进行 CYP2C19 基因分型。如果患者最终接受伏立康唑治疗,他们将被随机分配(1:1 实验/对照)。在实验组中,患者将根据药物遗传学算法接受剂量,包括 CYP2C19 基因型和临床及人口统计信息。在对照组中,患者将根据临床实践指南接受剂量。此外,将进行西班牙国家医疗保健系统 (NHS) 的成本效益评估。将对每个组进行直接成本计算。结论这项试验将提供有关在西班牙 NHS 中实施预防性伏立康唑基因分型策略的可行性和成本效益的信息。伦理与传播 该方案的西班牙语版本已通过拉巴斯大学医院伦理委员会和西班牙药品和医疗器械管理局的评估和批准。 试验结果
引言:克唑替尼是一种靶向c-MET/ALK/ROS1的激酶抑制剂,是治疗ALK突变非小细胞肺癌(NSCLC)的一线药物。尽管35-72%的NSCLC中c-MET经常过表达,但大多数NSCLC主要对克唑替尼治疗有耐药性。方法:使用一组NSCLC细胞系在体外和体内测试西达本胺对原发性克唑替尼耐药的影响。通过一系列分子生物学检测系统地研究了西达本胺的协同作用与c-MET表达和RNA甲基化之间的关系。结果:我们首次发现西达本胺可以在一组无ALK突变的NSCLC细胞系中增强克唑替尼的作用,尤其是那些c-MET表达水平高的细胞系。值得注意的是,在不含肝细胞生长因子 (HGF;一种 c-MET 配体) 的无血清培养基中培养的 NSCLC 细胞对克唑替尼的敏感性,西达本胺无法增加该细胞对克唑替尼的敏感性。相反,在无血清/无 HGF 的培养基中添加 HGF 可以恢复西达本胺的协同作用。此外,用 c-MET 抗体治疗或 siRNA 敲低 c-MET 表达也可以消除西达本胺的协同作用。虽然 c-MET 表达低或无表达的细胞主要对西达本胺-克唑替尼联合治疗具有抗性,但强制 c-MET 过表达可以增加这些细胞对西达本胺-克唑替尼联合治疗的敏感性。此外,西达本胺可以通过下调 METTL3 和 WTAP 表达来抑制 mRNA N6-甲基腺苷 (m6A) 修饰,从而降低 c-MET 表达。西达本胺联合克唑替尼治疗可显著抑制c-MET下游分子的活性。结论:西达本胺通过降低c-MET mRNA的m6A甲基化水平,下调c-MET的表达,从而以c-MET/HGF依赖的方式增加NSCLC细胞对克唑替尼的敏感性。
摘要引入侵入性曲霉病是血液疾病患者发病率和死亡率的最重要原因。目前,伏立康唑是侵入性真菌疾病的一线治疗方法。伏立康唑的药代动力学间个体差异取决于遗传因素。CYP450涉及伏立康唑总代谢的70%–75%,主要是CYP3A4和CYP2C19,其中剩余的25%–30%由单氧酶黄素进行的代谢。CYP2C19单核苷酸多态性可以解释伏立康唑代谢变异性的50%–55%。材料和方法的主要目的是将先发制人的伏立康唑基因分型与常规实践进行比较。主要结果是在治疗范围内第五天的血清伏立康唑。次要结果是与伏立康唑有关的第90天内的治疗衰竭和不良事件的综合变量。总共有146例有可能会接受伏立康唑的侵入性曲霉病的患者将被招募,并且CYP2C19将是基因型的。如果患者最终会接受伏立康唑,则将被随机分配(1:1实验/对照)。在实验组中,患者将根据药物遗传学算法接受剂量,包括CYP2C19基因型以及临床和人口统计信息。在控制臂中,患者将根据临床实践指南接受剂量。此外,还将进行西班牙国家医疗保健系统(NHS)的观点成本效益评估。试验结果将执行每个手臂的直接计算。结论该试验将提供有关西班牙NHS中先发制人伏立康唑基因分型策略实施的可行性和成本效益的信息。道德和传播该协议的西班牙版本已由La Paz大学医院伦理委员会和西班牙药品和医疗设备进行了评估和批准。
难治性肿瘤细胞的发展通过激活促进细胞增殖、迁移、侵袭、转移和存活的机制限制了癌症的治疗效果。苯并咪唑类驱虫药具有广谱作用,可清除人类和兽医学中的寄生虫。除了作为抗寄生虫剂外,苯并咪唑类驱虫药还具有抗癌活性,例如破坏微管聚合、诱导细胞凋亡、细胞周期 (G2/M) 停滞、抗血管生成和阻断葡萄糖转运。这些抗肿瘤作用甚至延伸到对已批准疗法有抗性的癌细胞,当与传统疗法结合时,可增强抗癌效果并有望作为佐剂。最重要的是,这些驱虫药可能提供广泛、安全的癌症治疗谱,正如它们作为抗寄生虫剂的长期使用历史所证明的那样。本综述总结了有关苯并咪唑类驱虫药(包括阿苯达唑、帕苯达唑、芬苯达唑、甲苯咪唑、奥苯达唑、奥芬达唑、利克苯达唑和氟苯达唑)在癌细胞系、动物肿瘤模型和临床试验中的抗癌作用的核心文献。本综述提供了有关如何通过增加治疗选择和减少常规疗法的副作用来改善癌症患者生活质量的宝贵信息。
Alpha 1 -adrenoreceptor antagonist: alfuzosin Antianginal: ranolazine Antiarrhythmic: dronedarone, propafenone, quinidine Anticancer drugs: neratinib, venetoclax Anti-gout: colchicine Antihistamines: terfenadine 抗精神病药/神经疗法:lurasidone,pimozide,Quetiapine良性前列腺增生性增生产品:硅氧脂蛋白心血管药物产品:eplerenone,eplerenone,ivabradineERGOT衍生物ERGOT衍生物:Dihydrogogotinal,Ergotanion,Ergioner ofergoterine:e氧素,甲基甲基辅助物质: cisapride Immunosuppressants: voclosporin Lipid-modifying agents: o HMG Co-A reductase inhibitors: lovastatin, simvastatin o Microsomal triglyceride transfer protein (MTTP) inhibitor: lomitapide Migraine medicinal products: eletriptan Mineralocorticoid receptor antagonists: finerenone 阿片类药物拮抗剂:NaloxegolPDE5抑制剂:Avanafil,Sildenafil,Tadalafil,Vardenafil镇静剂/催眠药:氯唑培训,白二爱,白唑仑,雌唑仑,氟他莎草,氟西唑仑,咪达唑仑和甲状腺酸唑仑和Triazopress•vastapaptin•divapapt
曲唑酮(TZD)是一种用于治疗主要抑郁症和睡眠障碍的抗抑郁药。升高的曲唑酮与中枢神经系统抑郁症有关,这表现为恶心,嗜睡,混乱,眩晕,疲惫等。要开发具有最小不良影响的临床活性药物化合物,必须全面了解该药物对DNA的作用机制。因此,我们利用各种光谱和计算技术研究了曲唑酮与DNA之间的相互作用方式。使用UV - VIS滴定的研究表明,DNA和曲唑酮具有有效的相互作用。通过稳态荧光研究,Lehrer方程计算得出的船尾伏默常数(K SV)的大小为5.84×10 6 m-1。uv - Vis吸收,DNA熔化,染料位移和圆形二分法研究表明,曲唑酮与小凹槽中的DNA结合。分子对接和分子动力学模拟表明TZD-DNA系统是稳定的,并且结合模式较小。此外,离子强度研究表明,DNA和曲唑酮没有实质性的静电结合相互作用。
EXBLIFEP 含有头孢吡肟和恩美唑巴坦。头孢吡肟是一种第四代头孢菌素,具有广谱杀菌活性,可对抗革兰氏阴性和革兰氏阳性病原体,并获准用于治疗多种感染,包括单纯性尿路感染、慢性尿路感染和肾盂肾炎、腹腔内感染和肺炎。头孢吡肟通常对 C 类 AmpC 和 D 类 OXA-48 酶的水解稳定。恩美唑巴坦是一种新型两性离子青霉烷酸砜 β-内酰胺酶抑制剂 (BLI),对多种广谱 β-内酰胺酶 (ESBL) 具有强效活性,而这些酶通常会对第三代和第四代头孢菌素产生耐药性。尽管结构上与他唑巴坦相似,但恩美唑巴坦由于三唑环的 N-甲基化而表现出增强的抗 ESBL 活性。
组蛋白去乙酰化酶抑制剂已被研究作为癌症和其他疾病的潜在治疗剂。已知 HDI 可促进组蛋白乙酰化,从而导致开放染色质构象并通常增加基因表达。在之前的研究中,我们报告了一组基因,特别是那些由超级增强子调控的基因,可以被 HDAC 抑制剂拉格唑抑制。为了阐明拉格唑抑制基因的分子机制,我们进行了转座酶可及染色质测序、ChIP-seq 和 RNA-seq 研究。我们的研究结果表明,虽然拉格唑治疗通常会增强染色质的可及性,但它会选择性地降低一组超级增强子区域的可及性。这些基因组区域在拉格唑存在下表现出最显著的变化,富含 SP1、BRD4、CTCF 和 YY1 的转录因子结合基序。 ChIP-seq 分析证实 BRD4 和 SP1 在染色质上各自位点的结合减少,特别是在调节基因(如 ID1、c-Myc 和 MCM)的超级增强子上。拉格唑通过抑制 DNA 复制、RNA 加工和细胞周期进程发挥作用,部分是通过抑制 SP1 表达来实现的。shRNA 消耗 SP1 可模拟拉格唑的几种关键生物学效应并增加细胞对该药物的敏感性。针对细胞周期调控,我们证明拉格唑通过干扰中期染色体排列来破坏 G/M 转换,这种表型在 SP1 消耗时也观察到。我们的结果表明,拉格唑通过抑制超级增强子上的 BRD4 和 SP1 发挥其生长抑制作用,导致细胞抑制反应和有丝分裂功能障碍。