拓扑的作用及其保存属性的能力,在这项工作中,可以比作咖啡杯如何被重塑成甜甜圈的形状;尽管在变形过程中外观和形状发生了变化,但奇异的孔——拓扑特征——保持不变。这样,这两个物体在拓扑上是等价的。“我们的光子之间的纠缠是可塑的,就像陶工手中的粘土一样,但在成型过程中,一些特征被保留了下来,”福布斯解释说。
摘要:自组织原理在新兴的计算哲学领域具有根本意义。自组织系统已在科学和哲学的各个领域得到描述,包括物理学、神经科学、生物学和医学、生态学和社会学。虽然系统架构及其一般用途可能取决于特定领域的概念和定义,但大脑系统中明确确定了自组织的(至少)七个关键特性:1)模块化连接,2)无监督学习,3)自适应能力,4)功能弹性,5)功能可塑性,6)从局部到全局的功能组织,以及 7)动态系统增长。本文根据神经生物学、认知神经科学和自适应共振理论 (ART) 以及物理学的见解对这些特性进行了定义,以表明自组织在最小化结构系统复杂性的同时实现了稳定性和功能可塑性。本文讨论了一个基于实证研究的具体示例,以说明模块化、自适应学习和动态网络增长如何为人类握力控制提供稳定而可塑的体感表征。提出了对机器人“强”人工智能设计的启示。
一人之力:空间和单细胞基因组学时代的免疫学 免疫系统是一个复杂、动态和可塑的网络,由各种相互作用的细胞类型组成,这些细胞类型不断感知和响应环境线索。从很早以前,免疫学领域就投入了巨大的努力来表征各种免疫细胞类型并阐明其功能。然而,越来越多的证据表明,当前的技术和分类方案在解释免疫过程的功能异质性方面的能力有限。单细胞基因组学有可能彻底改变我们表征复杂免疫细胞组合以及研究其空间组织、动力学、克隆分布、途径和串扰的方式。这个新兴领域可以极大地影响免疫系统的基础和转化研究。我将讨论新兴的单细胞基因组学研究如何改变我们对癌症免疫学的看法。最后,我将考虑单细胞基因组学的最新和即将到来的技术和分析进展及其对未来免疫学研究和免疫疗法的巨大潜在影响。
摘要 学生是否将智力视为固定或可塑的特质(即他们的“心态”)对他们对失败和学业成绩的反应具有重要影响。尽管对心态的研究历史悠久且越来越受欢迎,但最近的荟萃分析表明,心态在预测本科生群体的学业成绩方面表现不佳。在这里,我们提出的证据表明,这些混合结果可能是由于心态量表上的语言模糊所致。具体而言,“智力”一词是心态量表每一项的指称,但从未定义,这可能导致不同的解释和测量误差。因此,我们进行了一项探索性的定性研究,以描述本科生如何定义智力,以及他们的定义如何影响他们对心态量表的反应。我们发现了本科生定义智力的两种不同方式:知识和能力(例如,学习、解决问题的能力)。此外,我们发现学生对智力的定义可能因环境而异。最后,我们提出的证据表明,对智力有不同定义的学生对心态量表项目的解释和反应也不同。我们讨论了这些结果对于本科生思维定势量表的使用和解释的影响。
学习科学本质上涉及跨学科研究,其总体目标是推进学习理论,并为有效的教学方法和学习技术的设计和实施提供信息。在这些努力中,学习科学涵盖了与学习、动机和社会互动相关的各种结构、措施、过程和结果。这些复杂的目标还受到来自学习环境、学习任务和个人学习者特征的大量因素的影响。学习发生在众多相互作用的背景因素中,这些因素涵盖学校、教师、课堂、同龄人和可用技术之间的差异。这些背景在各种因素方面也存在很大差异,例如学生获得的社会支持、教师参与度、人口和意识形态多样性,以及教育技术提供的教学设计策略和可供性(Anderson & Dron,2011)。学习者本身在年龄、年级、种族和文化背景等一系列固定因素以及参与度、兴趣、学习策略、阅读技巧和先前知识等可塑的个人差异上存在差异(Cantor 等人,2019 年;Jonassen 和 Grabowski,2012 年;Winne,1996 年)。
摘要 多感官身体错觉的证据表明,身体表征可能是可塑的,例如,通过体现外部物体。然而,根据当前任务需求调整身体表征也意味着,如果不再需要外部物体,它们就会脱离身体表征。在当前的网络研究中,我们引入了二维 (2D) 虚拟手的具象化,可以通过计算机鼠标或触摸板的主动移动来控制。在初始具象化之后,我们通过比较两种情况来探索脱离身体的情况:参与者要么继续移动虚拟手,要么停止移动并保持手静止。基于将身体表征概念化为一组多感官绑定的理论解释,如果身体表征不再通过相关的视觉运动信号更新,我们预计虚拟手会逐渐脱离身体。与我们的预测相反,一旦参与者停止移动虚拟手,它就会立即脱离身体。这个结果在两个后续实验中得到了复制。观察到的瞬间脱离肉身可能表明人类对虚拟环境中动作和身体的快速变化很敏感,因此会特别迅速地调整相应的身体表现。
将可拉伸电极或装置从一种基底转移到另一种薄弹性体上是一项艰巨的任务,因为弹性印章通常会在脱粘界面处产生巨大的应变,超出电极的拉伸极限。如果印章是刚性的,则不会发生这种情况。然而,刚性材料不能用作可拉伸电极的基底。在此,具有可调刚性的丝素蛋白(通过控制相对湿度,杨氏模量可以从 134 kPa 变为 1.84 GPa)用于将高度可拉伸的金属网络转移为高度可塑的表皮电极。丝素蛋白印章在剥离过程中被调节为刚性,然后在层压在湿润的人体皮肤上时作为基底变得柔软且高度可拉伸。此外,表皮电极在连接超过 10 天后没有表现出皮肤刺激或炎症。与商用 Ag-AgCl 凝胶电极相比,高柔顺性可降低界面阻抗,并在测量肌电信号时降低电极的噪声。在转移的不同阶段调整刚度的策略是一种通用方法,可以扩展到转移其他可拉伸电极和表皮电子器件、人机界面和软机器人。
摘要:骨骼肌是一种高度可塑的组织,在急性和阻力运动中表现出显著的适应能力,并改变其组成以适应使用和废用,这一过程称为肌肉可塑性。热休克蛋白 (HSP) 是一类进化保守的分子伴侣,与骨骼肌可塑性的调节有关。在这里,我们总结了支持以下观点的关键发现:HSP 是维持骨骼肌完整性和功能性所必需的重要成分。HSP 参与肌生成所需的转录程序,并在肌肉运动和损伤后被激活。它们的功能障碍(无论是由于表达不当还是基因突变导致)都会导致肌肉萎缩并导致肌病和周围运动神经病的发展。在运动神经病中观察到神经支配/神经支配和反复的神经退化/再生,这表明 HSP 表达和功能失衡可能会损害神经肌肉接头的修复。增强 HSP 活性可能有助于通过促进肌肉分化和帮助修复 NMJ 来防止肌肉萎缩。增强 HSP 功能还可能有助于对抗横纹肌肉瘤 (RMS) 的发展,这是一种高度侵袭性的儿童软组织肉瘤,其细胞具有骨骼肌特征,但无法完全分化为骨骼肌细胞。
学习者的空间技能是 STEM 教育(包括计算机)成就的可靠且重要的预测指标。空间技能也是可塑的,这意味着它可以通过训练得到提高。大多数认知技能训练只能提高一小部分类似任务的表现,但研究人员已经发现足够的证据表明空间训练可以广泛提高 STEM 成就。我们尚不清楚使空间技能训练具有广泛可转移性而其他认知训练却不能的认知机制,但了解这些机制对于开发持续有益于学习者的培训和教学非常重要,尤其是那些从低空间技能开始的学习者。本文提出了空间编码策略 (SpES) 理论来解释连接空间技能和 STEM 成就的认知机制。为了激发 SpES 理论,本文回顾了 STEM 教育、学习科学和心理学的研究。SpES 理论为这些文献中的发现提供了令人信服的事后解释,并与关于大脑结构功能的神经科学模型相一致。本文最后提出了一个计划,用于测试该理论的有效性并将其用于指导未来的研究和教学。该论文重点关注计算教育的意义,但空间技能对 STEM 表现的可转移性使得提出的理论与许多教育界相关。
摘要肺癌 (LC) 是全球癌症相关死亡的主要原因。化疗或放疗等传统治疗方法对肺癌的治疗效果仅有微小改善。针对非小细胞肺癌 (NSCLC)(最常见的亚型,占 85%)中存在的特定基因畸变的抑制剂改善了预后前景,但由于 LC 突变谱的复杂性,只有一小部分患者受益于这些靶向分子疗法。最近,人们意识到实体瘤周围的免疫浸润可以促进促肿瘤炎症,这导致了抗癌免疫疗法在临床上的开发和实施。在 NSCLC 中,最丰富的白细胞浸润之一是巨噬细胞。这些高度可塑的吞噬细胞是先天免疫细胞库的一部分,可在早期 NSCLC 建立、恶性进展和肿瘤侵袭中发挥关键作用。新兴的巨噬细胞靶向疗法主要集中在使巨噬细胞重新分化为抗肿瘤表型、消除促肿瘤巨噬细胞亚型或将传统细胞毒性治疗与免疫治疗药物相结合的联合疗法。用于探索 NSCLC 生物学和治疗的最广泛使用的模型是 2D 细胞系和小鼠模型。然而,研究癌症免疫学需要相当复杂的模型。3D 平台(包括类器官模型)正在迅速发展成为研究肿瘤微环境中免疫细胞-上皮细胞相互作用的有力工具。免疫细胞与 NSCLC 类器官共培养允许体外观察与体内环境非常相似的肿瘤微环境动态。最终,将 3D 类器官技术应用于肿瘤微环境建模平台可能有助于在 NSCLC 免疫治疗研究中探索巨噬细胞靶向疗法,从而开辟 NSCLC 治疗的新领域。