全球各经济体都在竞相实现 2030 年的可持续发展目标。17 项可持续发展目标承诺不让任何人掉队,并首先帮助最需要帮助的人,通过由 155 个目标和 231 个独特指标组成的全球框架进行监测。这些指标中的大多数是由国家统计系统通过代表性调查、人口普查和行政记录编制的。例如,可持续发展目标 1:消除贫困的指标通常来自对家庭收入和支出或生活水平的调查。通常,此类调查的样本量足以提供具有全国代表性的估计值。当进一步按重要或已建立的国内领域(例如州、省或地区)细分贫困估计值时,这些样本量通常还提供在可容忍的可靠性水平内的估计值。然而,调查样本量通常不够大,无法在更细致的层面(如市镇和村庄)提供可靠的估计,因此可能无法帮助政策制定者有效地锁定最需要减贫计划的人口群体。
验证和验证材料和过程制造技术电力和能源系统背景和问题声明:使用未拖放航空车辆(UAVS)的应用需要储能电池,这些储能电池可以在5分钟或更短的时间内快速充电,并且可容忍零伏特,以便允许群管在探险任务任务中使用相同的充电器。能够储能技术反复生存到零伏的能力可以放大储能管理控制,并且可以像混合储能系统中的电容器一样用于远程和自动应用。当前的技术状态:大多数锂离子电池电池在2.5V至4.2V的电压窗口中运行,温度窗口-10°C至50°C的排放,并且充电5°C至45°C。排放低于最低电压的降低性能,导致不可逆的损坏,并充电以高于最大电压会导致电解质故障和故障。电池组包含电池管理系统(BMS),以保持电压和温度窗口内的适当操作。
流体逻辑电路通过消除笨重的组件来简化系统设计,同时在与电子设备不符的一系列敌对环境中启用操作,但以有限的计算能力和响应时间为代价。本文提出了针对快速切换时间,减少组件计数,低单位成本和高复发性优化的四端流感晶体管,以实现复杂的流体控制电路,同时保持每分钟升高的流量。使用三个流体晶体管的环振荡器达到了振荡频率,最多可达到一个kilohertz,具有完全信号传播,可容忍数十亿个循环而不会失败。基本处理器电路,例如完整的加法器和3位类似物对数字的转换器,每个晶体管都只需要七个晶体管。解码电路驱动高分辨率的软性触觉显示,其刷新时间低于人类的潜伏期感知阈值,而无电子控制电路对气动执行器进行了闭环位置控制,并具有干扰抑制作用,从而证明了跨域的值。
不准确性和伤害继续在进行空降行动的风险评估中发挥作用,这增加了在静态线操作期间监测空中风的理由。尽管空降界普遍认为高空风速越快,伞兵在着陆时水平漂移越快,但有根据的数据极其有限。2022 年和 2023 年的两起轶事案例凸显了潜在影响,但需要进一步研究才能得出明确结论。在两次空降行动中,空中风速都超过了 25 节,但地面风仍在可容忍范围内。在这两种情况下,六名经验丰富的跳伞者都带着 MC-6 降落伞跳出,这是一种可操纵的伞盖,具有 10 节向前漂移的能力。即使跳伞者采取了适当的降落伞着陆 (PLF) 姿势,他们都迅速向后漂移并以极大的力量着陆。大多数人需要某种形式的医疗救治。如果这些伞兵使用 T-11 降落伞,潜在的伤害可能会更加严重。
可以通过冗余,多样性,分离,自我诊断和重新配置来实现用于自动驾驶汽车的抽象耐故障硬件体系结构。这些方法可以通过N独立系统体系结构与多数裁员结合在一起。可容忍系统的开发在从4级的自动驾驶系统启动中至关重要。电气和电子系统的复杂性日益增加对于安全关键系统的设计具有挑战性。这项工作旨在开发一种方法来管理产品开发中这种复杂性并使用它来比较不同类型的体系结构。基础是由传感器和微控制器组成的系统。通过数值求解相应的马尔可夫链的主方程来自动计算系统的所有可能月球配置的可靠性。随后,基于软件的故障树分析可以对组件结构进行更详细的建模。结果表明,四线体系结构可以提供合适的结果,并且相对于ISO 26262目标值,2-ECU系统的开发工作高于1-ECU系统。关键字:自动驾驶,失败操作,产品架构,计算设计方法,数值方法联系人:Julitz,Tim Maurice Dermany julitz julitz@uni-wuppertal.de
摘要。异步公共子集(ACS)问题是分布式计算中的一个基本问题。最近,Das等人。(2024)开发了一种具有多种理想属性的新ACS协议:(i)它提供了最佳的弹性,可容忍总共n派的T 本文的目的是从现代理论加密图的角度进行详细的,独立的说明和对该协议的分析,从而实现了定义和证明的许多细节,从而提供了基于关于Hash功能的具体安全性假设的完整安全分析(即,不依赖于随机的或依赖于随机的构图),并依赖于所有的构图,并在所有的构图中进行了整个构图。本文的目的是从现代理论加密图的角度进行详细的,独立的说明和对该协议的分析,从而实现了定义和证明的许多细节,从而提供了基于关于Hash功能的具体安全性假设的完整安全分析(即,不依赖于随机的或依赖于随机的构图),并依赖于所有的构图,并在所有的构图中进行了整个构图。
摘要:在人类剩下的时间很少,可以将气候变化降低到可容忍的水平,因此需要高度可扩展且可快速可部署的解决方案,任何国家都可以实施。国际水域中的海岸风能是一种未充分利用的资源,甚至可能由内陆国家来利用。在本文中,提出了在高海上自主运行的风力涡轮机以收获能量。风力涡轮机产生的电能被转换为可再生燃料并存放在船上。后来,燃料将被转移到岸或其他使用目的地。在系统级别上探索了所提出的想法,其中必要的基本子系统被确定和定义,例如能量转换和存储以及推进子系统。此外,还研究了各种操作可能性,包括不同的帆船策略和存储燃料的组合。现有的想法也被阐述了,也提出了一个示例概念。在本文中,提出的可再生能源转换系统将在更高的抽象水平进行探索。跟进这项概念研究,需要进行更详细的研究,以确定这种航行可再生能源转换系统的开发是否可以从工程,经济和环境的角度可行。
两位有亲身经历的人——一位来自安大略省多伦多的患者和他的妻子——向委员会发表了讲话。该患者于 2022 年 4 月被诊断出患有转移性胰腺癌,他的治疗包括在参加临床试验的同时接受 FOLFIRINOX、奥拉帕尼和白蛋白紫杉醇与吉西他滨等疗法。尽管面临诊断延迟和支付治疗费用的经济负担等挑战,但他们仍然充满希望(他的座右铭是“不遗余力”)。在一次不成功的临床试验后,白蛋白紫杉醇与吉西他滨于 2024 年 3 月重新推出。他们称这种体验具有可控的副作用和有效的疾病控制,支持良好的生活质量。这种治疗方法的给药时间短和副作用可容忍,这一点至关重要,他们将其描述为通往其他治疗方案的生命线和桥梁。他们强调了治疗结果的重要性,这些结果可以提高生活质量并让亲人有时间陪伴。他们还详细阐述了解决财务障碍和保险覆盖方面的困难,强调加拿大各地患者需要平等地获得有效的治疗。
我们通过引入合适的3量子门克服了这一困难(例如Toffoli Gate或CCNOT,见图4)。这样的门允许通过适当地选择第三个量子位的条目来实现量子状态的副本和两个量子位之间的NAND操作。在实际物理平台上执行量子算法时,由于测量或噪声,系统与环境的相互作用会降低信息。这与真实的经典设备中发生的情况有所不同,因为描述测量值或嘈杂进化的量子通道不会简单地以随机的方式翻转Qubit的状态,而是可以实际上可以将纯状态转换为混合状态,从而导致信息损失。此外,由于无用定理,错误校正方案更难实现。仍然,我们可以开发可容忍的算法以最大程度地减少损害,并且我们有一个重要的理论结果,称为阈值定理。这是经典von Neumann定理的类似物,并指出,通过应用量子误差校正方法,可以将错误率低于一定阈值的量子计算机可以将错误率降低到任意较低的级别。因此,我们希望总体上创建易于故障的算法和可行的量子计算。我们邀请读者查看此类算法的拓扑方法[19,20,8]。
在过去的一年中,在量子误差更正领域发生了许多发展。最近显示了如何执行可容忍的量子计算,而〜,〜,每值或每个门的一个时间步长或每扇门的断层的概率是小毛的。本文缩小了差距,并显示了如何执行误差概率q小于某个恒定阈值的误差时执行容错量子计算。成本在时间和空间上是多层次的,在量子计算过程中未使用测量值。对于仅在最近的邻居上工作的量子cirs也显示了相同的结果。为了达到这种噪声阻力,我们使用串联的量子误差校正代码。提出的方案是一般的,并且可以使用任何量子代码,这些量子代码是某些RESTM”,即它是“适当的量子代码”。恒定阈值R10是指定正确代码的参数的函数。我们提出了两个明确的量子代码类别。头等舱将经典的秘密与多项式共享。代码是在带有P元素的字段上定义的,这意味着Elementary量子粒子不是量子,而是“ Qupit”。第二类使用已知类别的量子代码,并将其转换为适当的代码。我们估计阈值qo为= 10-6。希望 - 本文完全激励搜索具有较高阈值的适当量子代码,此时量子计算变得可行。