摘要随着细胞在有丝分裂过程中复制其DNA,由于DNA复制过程的固有局限性,端粒缩短了。维持端粒长度对于癌细胞克服端粒缩短引起的细胞衰老至关重要。端粒酶逆转录酶(TERT)是端粒酶的限速催化亚基,端粒酶是RNA依赖性的DNA聚合酶,可延长端粒DNA以维持端粒稳态。tert启动子突变。此外,TERT启动子高甲基化也会导致TERT转录增加,已在dend依膜瘤和小儿脑肿瘤中使用。在高度癌症的气氛中观察到的TERT失调的高频使端粒酶活性成为开发新型疗法的有吸引力的靶标。在这篇综述中,我们简要讨论正常人类细胞中TERT的正常端粒生物学以及TERT的结构,功能和调节。我们还强调了TERT在癌症生物学中的作用,重点是原发性中枢神经系统肿瘤。最后,我们总结了TERT启动子突变在癌症中的临床意义,这些突变促进造成肿瘤的分子机制以及针对TERT的癌症疗法的最新进展。
摘要:食品浪费是一个紧迫的全球挑战,每年造成超过 1 万亿美元的损失,占全球温室气体排放量的 10%。大量研究致力于使用活性可生物降解包装材料来改善食品质量、最大限度地减少塑料使用并促进可持续包装技术的发展。然而,这方面的成功有限,这主要归因于材料性能差和生产成本高。在最近的文献中,银纳米粒子 (AgNPs) 的整合已被证明可以改善生物聚合物的性能,从而促进生物纳米复合材料的发展。此外,AgNPs 对食源性病原体的抗菌特性可延长食品保质期,并为减少食品浪费提供途径。然而,很少有评论从工业角度对整个生物聚合物组合中的 AgNPs 进行整体分析。因此,本评论批判性地分析了基于 AgNP 的生物纳米复合材料的抗菌、阻隔、机械、热和防水性能。我们还从食品包装应用的角度讨论了这些先进材料,并评估了它们在延长食品保质期方面的表现。最后,我们批判性地讨论了 AgNP 生物纳米复合材料商业化的当前障碍,以提供一项工业行动计划,以开发可持续包装材料,减少食品浪费。
秀丽隐杆线虫是一种用于研究发育和衰老遗传学的多功能模型生物,通过给线虫喂养表达特定 dsRNA 的细菌可以抑制其基因表达。之前已证实通过常规转基因技术过表达缺氧诱导因子 1 ( hif-1 ) 或热休克因子 1 ( hsf-1 ) 可延长线虫寿命。然而,目前尚不清楚其他基因过表达方法是否可行,尤其是随着基于 CRISPR 的技术的出现。本文中,我们表明,给经过基因改造以稳定表达 Cas9 衍生的合成转录因子的秀丽隐杆线虫喂养表达启动子特异性单向导 RNA (sgRNA) 的细菌也可以激活基因表达。我们证明,通过摄取针对 hif-1 或 hsf-1 各自启动子区域的 sgRNA 激活 CRISPR 可增加基因表达并延长秀丽隐杆线虫的寿命。此外,作为旨在使用 CRISPR 激活秀丽隐杆线虫的未来研究的计算机资源,我们提供了预测的启动子特异性 sgRNA 靶序列,用于超过 13,000 个秀丽隐杆线虫基因,并具有实验定义的转录起始位点。我们预计本文描述的方法和组件将有助于促进全基因组基因过表达研究,例如,通过将表达 sgRNA 的细菌喂给线虫来诱导转录,以识别衰老或其他感兴趣的表型的调节因子。
我们设计了一种独特的纳米胶囊,可高效地将单个 CRISPR-Cas9 封装、非侵入性脑递送和肿瘤细胞靶向,为胶质母细胞瘤基因治疗提供了一种有效且安全的策略。我们的 CRISPR-Cas9 纳米胶囊可以通过将单个 Cas9/sgRNA 复合物封装在谷胱甘肽敏感聚合物外壳中来简单制造,该外壳包含双重作用配体,可促进 BBB 渗透、肿瘤细胞靶向和 Cas9/sgRNA 选择性释放。我们的封装纳米胶囊显示出有希望的胶质母细胞瘤组织靶向性,导致脑肿瘤中 PLK1 基因编辑效率高(高达 38.1%),高危组织中的脱靶基因编辑可忽略不计(不到 0.5%)。使用纳米胶囊治疗可延长中位生存期(68 天,而无功能性 sgRNA 治疗的小鼠为 24 天)。因此,我们的新 CRISPR-Cas9 递送系统解决了各种递送挑战,以展示基因编辑 Cas9 核糖核蛋白的安全和肿瘤特异性递送,从而改善胶质母细胞瘤治疗,这可能对其他脑部疾病具有治疗用途。
HER2+/HR+乳腺癌是一种特殊分子类型的乳腺癌,现有治疗方法易产生耐药,需要“精准治疗”。吡咯替尼是一种泛HER-1激酶抑制剂,可用于HER2阳性肿瘤,而SHR6390是一种CDK4/6抑制剂,可以抑制ER+乳腺癌细胞周期进展和癌细胞增殖。在癌细胞中,HER2和CDK4/6信号通路可能不是冗余的,SHR6390与吡咯替尼联合抑制两条通路可能对HER2+/HR+乳腺癌产生协同抗癌作用。在本研究中,我们确定了双药联合使用的协同作用及其潜在的分子机制。我们发现SHR6390和吡咯替尼联合使用在体外协同抑制了HER2+/HR+乳腺癌细胞的增殖、迁移和侵袭。两药联合应用可诱导HER2+/HR+乳腺癌细胞株G1/S期阻滞及凋亡;两药联合应用可延长异种移植模型体系中肿瘤复发的时间。通过二代RNA测序技术及吡咯替尼耐药细胞株富集分析发现,FOXM1与诱导HER2靶向治疗耐药有关。在HER2+/HR+乳腺癌细胞株中,两药联合应用可进一步降低FOXM1磷酸化,从而在一定程度上增强抗肿瘤效果。这些结果提示SHR6390与吡咯替尼联合应用可能通过调控FOXM1来抑制HER2+/HR+乳腺癌的增殖、迁移和侵袭。
药物降低 PrP 表达对动物模型中的朊病毒病有效,目前正在进行临床测试。将 PrP 降低 50% 可延长感染朊病毒的小鼠的生存时间和健康寿命,但不能防止症状出现或阻止疾病进展。其他候选药物应寻求将 PrP 表达降低到更低的水平。二价 siRNA 是一种新型寡核苷酸药物模式,在临床前模型中具有良好的效力、耐用性和生物分布数据,这激励我们在这项技术中寻找治疗朊病毒病的新药物候选物。在这里,我们首先确定一种针对小鼠 PrP 基因的工具化合物,并确定降低 PrP 的二价 siRNA 在感染朊病毒的小鼠中的功效。然后,我们引入了含有人类 PrP 基因完整非编码序列的人源化转基因小鼠系作为识别人类序列靶向药物的工具。我们鉴定出一种针对人类 PrP 基因的高效 siRNA 序列,并确定一种包含延伸核酸和与 RNA 靶标不匹配的 3′ 反义尾的化学支架可产生更佳的效力。我们提名降低 PrP 的二价 siRNA 2439-s4 作为人类朊病毒病的新候选药物。
摘要:越来越多的证据表明,针对人类表皮生长因子受体 3 (HER3) 的疗法可能是癌症靶向治疗的可行途径。在这里,我们研究了一种新型药物偶联物 Z HER3 -ABD-mcDM1,它由 HER3 靶向亲和体分子、与细胞毒性微管蛋白聚合抑制剂 DM1 偶联以及白蛋白结合域组成,可延长体内半衰期。Z HER3 -ABD-mcDM1 对 HER3 的细胞外结构域表现出很强的亲和力 (KD 6 nM),对 HER3 过表达的胰腺癌细胞系 BxPC-3 表现出更强的亲和力 (KD 0.2 nM)。该药物偶联物对 BxPC-3 细胞表现出强大的细胞毒性作用,IC 50 值为 7 nM。对放射性标记版本 [ 99m Tc]Tc-Z HER3 -ABD-mcDM1 的评估显示,其内化率相对较高,8 小时后内化率为 27%。进一步的体内评估表明,它可以靶向小鼠的 BxPC-3(胰腺癌)和 DU145(前列腺癌)异种移植瘤,注射 BxPC-3 异种移植瘤后 6 小时的摄取量达到峰值 6.3 ± 0.4% IA/g。一般生物分布显示,肝脏、肺、唾液腺、胃和小肠中均有摄取,这些器官已知会自然表达鼠 ErbB3。研究结果表明,Z HER3 -ABD-mcDM1 是一种高效且选择性的药物偶联物,能够特异性靶向 HER3 过表达细胞。讨论了进一步的临床前和临床开发。
规定 N. 26086 国家核物理研究所所长——已看到决议号。 2023 年 7 月 21 日第 16744 号法令,董事会批准发起 n 号奖项的竞赛。 15 项理论物理学第 3 级(高级补助金)科学研究活动合作补助金,旨在奖励在外国机构任职的外国研究人员和意大利研究人员,他们在资助截止日期前已连续在国外停留至少 3 年,为期一年,可续签至 24 个月,用于在 INFN 的各部门、国家实验室和中心进行学习和研究; - 考虑到规定编号2023 年 9 月 11 日第 25864 号法令,其中发布了 n 号奖项的竞赛通知。 15 项理论物理学第 3 级科学研究资助(高级资助),为期一年,可续期一年; - 考虑到第2023 年 10 月 27 日第 16830 号法令,董事会批准调整上述研究补助金的期限和总支出; - 承认有效性并确定需要在竞赛公告号中纠正研究资助的期限。 25864/2023 规定 1. 纠正规定编号。 2023 年 9 月 11 日第 25864 号法令,其文本部分如下:a) 每项研究补助金最初发放期限为一年,可延长第二年。替换为以下内容:每项研究补助金发放期限为两年。国家核物理研究所 主席
2018 年,美国估计有 42,220 例肝细胞癌和肝内胆管癌新发病例和 30,200 例死亡病例 [1]。这些死亡病例大多数是由于肝细胞癌 (HCC),这是最常见的原发性肝癌 [2]。在全球范围内,肝癌是癌症死亡的第四大原因 [3]。HCC 最常与慢性乙型肝炎病毒或丙型肝炎病毒感染有关,尤其是并发肝硬化,这限制了手术切除的可行性 [4]。对于适合手术的患者,肝移植和手术切除仍然是早期 HCC 最有效的治疗方法。不幸的是,绝大多数患者在被诊断为 HCC 时已处于晚期,肿瘤无法切除。以往,晚期HCC预后不佳,治疗仅限于经动脉化疗栓塞、射频消融、放射治疗和全身药物治疗[5]。欧洲SHARP试验首次证明,多靶点小分子酪氨酸激酶抑制剂(TKI)索拉非尼可延长不可切除的HCC患者的中位生存期,优于安慰剂[6]。随后,更多靶向药物相继问世,并在II期或III期临床试验中证明其有效且安全[7]。尽管已有研究将这些药物的有效性和安全性与索拉非尼或安慰剂进行了比较,但尚未进行过头对头比较[8]。为了进一步评估靶向药物治疗HCC患者的疗效和安全性证据,我们进行了贝叶斯网络荟萃分析(NMA)以比较不同HCC靶向药物的生存期、客观缓解率(ORR)和不良事件(AE)。
引言肾脏在调节哺乳动物的葡萄糖稳态方面具有重要作用。在肾小球中过滤了大约180克/天葡萄糖,绝大多数被肾近端小管细胞(KPTC)重吸收,主要是通过钠 - 葡萄糖葡萄糖共转运蛋白2(SGLT2)(SGLT2)(SGLT2)(1-3)。在糖尿病中,葡萄糖吸附增加,从而加剧了高血糖症(3)。sglt2抑制剂(SGLT2I)诱导糖尿病,通常用于治疗糖尿病。引人注目的是,大规模试验始终显示SGLT2I有效地防止了肾功能的下降,并改善了有或没有糖尿病患者的充血性心力衰竭的心脏功能;这些改善包括对末期肾脏疾病的进展减慢,心力衰竭的住院时间较少,死亡率降低(4-10)。早期临床研究表明,SGLT2I对非酒精性脂肪肝病(NAFLD)患者也有益(11,12)。有趣的是,SGLT2I Canagliflozin已显示可延长老年男性啮齿动物的寿命(13)。SGLT2I的这些强大的多机构有益作用表明,通过增加糖尿的葡萄糖负荷减少葡萄糖负荷会诱导系统的代谢重编程,从而影响遥远器官的代谢。ferrannini及其同事表明,在2型糖尿病患者中,SGLT2I诱导的糖尿症与内源性葡萄糖产生的增加有关,胰岛素敏感性增强以及从碳水化合物到脂质的底物利用率转移(14,15);已经假设这种代谢转移介导了SGLT2I的有益心脏作用(2)。根据这一假设,糖尿降低