可折叠机翼扑翼飞行器(FWA)是一种通过模仿昆虫、鸟类或蝙蝠等折叠机翼上下扇动来产生升力和推力的飞行器。近年来,仿生扑翼飞行器的研究日益增多,提出了多种结构形式的扑翼飞行器。扑翼飞行器的飞行环境与鸟类或大型昆虫相似,如低雷诺数的流体动力学和非定常气动[1,2] 。扑翼飞行器在飞行过程中,其运动学模型通常具有颤动、摆动、扭转和伸展4个自由度[3] 。Thielicke [4] 研究了不同弯度和厚度的鸟类臂翼和手翼在慢速飞行过程中的气动特性。仿生飞行器传统运动学模型仅考虑了颤振和扭转两个自由度。本文在传统飞行器运动学模型的基础上,增加了平面内折叠和非平面折叠两个自由度。本文四自由度运动学模型的气动建模方法是拟常数模型与考虑洗流效应的单元理论相结合。采用多刚体有限元法建立纵向动力学模型。采用Floquet-Lyapunov方法分析开环纵向稳定性。采用鲁棒变增益控制方法分析闭环纵向稳定性。
本文旨在了解定向材料特性对折纸结构机械响应的作用。我们将 Miura-Ori 结构视为目标模型,因为它们具有可折叠性和负泊松比 (NPR) 效应,广泛应用于减震器、灾难庇护所、航空航天应用等。传统的 Miura-Ori 结构由各向同性材料(铝、丙烯酸)制成,其刚度和 NPR 等机械特性已为人们所熟知。然而,这些响应如何受到碳纤维增强聚合物 (CFRP) 复合材料等定向材料的影响,需要更深入了解。为此,我们研究了 CFRP 复合材料中的纤维方向和排列以及 Miura-Ori 的几何参数如何控制此类结构的刚度和 NPR。通过有限元分析,我们表明,与铝等各向同性材料制成的 Miura-Ori 结构相比,由 CFRP 复合材料制成的 Miura-Ori 结构可以实现更高的刚度和泊松比值。然后通过回归分析,我们建立了不同几何参数与相应机械响应之间的关系,并进一步利用该关系发现 Miura-Ori 结构的最佳形状。我们还表明,在 Miura-Ori 结构中的各个复合材料特性中,剪切模量是控制上述机械响应的主要参数。我们证明,我们可以通过找到几何和材料参数来优化 Miura-Ori 结构,从而产生最刚度和最可压缩的结构。我们期望我们的研究成为设计和优化更复杂的折纸结构的起点,其中结合了复合材料。
罗克汉普顿服务机构的组建曾多次被提出,甚至当地医务官(Dr D.S. Macdonald)也极力主张,但许多居民认为救护队没什么用,因为事故“并不常见”。在 1901 年 7 月 20 日举行的一次公开会议上,QATB 的罗克汉普顿分中心成立。该中心由救护队的一位先驱者、前昆士兰国防军救护队成员 W.G. Daniel 先生于 1901 年 8 月 26 日从布里斯班抵达当天以主管身份开设。正式开业时间为 1901 年 8 月 28 日。Dr D.S. Macdonald 是成立委员会的主席,1902 年 1 月他去世后,J.A. Walsh 先生接替他。委员会的其他成员包括 L.S. Robertson(名誉财务主管)、J.A. Walsh(名誉秘书)、F. Emmett、E. Marivedel 夫人、Young 夫人、Chester-Master 小姐和 Davidson 博士。Daniel 总监从布里斯班带来的设备包括一辆带轮担架、一副可折叠担架和一批急救材料。第一位被任命协助总监的有偿搬运工是陆军医疗队成员 Peter Hutcheon 先生。行动在东街 Fitzroy 和 Archer 街之间的租赁场所进行。头四个月共接到 105 通电话,包括 34 起事故和 32 次运输,导致步行 335 英里。该期间的净收入
摘要 多功能、可部署和可打包天线对于许多应用都非常重要,包括无人机、卫星通信(例如立方体卫星)和通用机载和星载通信系统。值得注意的是,这种天线为上述应用提供了新功能。在本文中,我们介绍了关于可折叠和物理可重构天线的新兴研究,这些天线可以改变其形状以适应和重新配置其电磁性能(例如工作频率、带宽、极化、波束宽度等)。 1. 简介 可重构、可调、多功能、可部署的天线系统已广泛用于支持无线通信系统的多种服务。电气和机械重构方法已经得到开发并应用于机载和星载系统的各种应用,例如通信、侦察、传感和能量收集 [1],[2]。最近推出的一类新的物理可重构天线是折纸天线 [3]。与传统天线相比,折纸天线具有独特的优势,例如性能可重构、可调性和高效存放。它们固有的电磁和机械多功能行为使它们适合便携式军事和太空应用,这些应用对空间要求严格(例如,小型卫星平台的空间限制)。此外,折纸天线变形的能力使得开发具有前所未有和变革性能力的新型电磁 (EM) 系统成为可能,例如:(a) 天线可以改变其几何形状,以根据时间调整其性能并实现多功能性,(b) 2-D 和 3-D 天线阵列可以改变其覆盖面积、形状和/或元件分离,以实现最佳波束成形、波束控制和扫描范围,以及 (c) 可重构频率选择表面可以改变其性能以支持可调和多功能天线和阵列的操作(见图 1)。[4] 中可以找到有关折纸天线和可展开电磁结构的最新评论。
摘要 — 美国宇航局的阿尔特弥斯计划计划在 2028 年之前在月球上部署一个可持续的月球基地。该基地需要一个基础表面栖息地,可以支持四名机组人员完成至少 28 天的任务。缺乏磁场和明显的月球大气延长了金属结构发出的二次辐射的寿命,这对暴露的宇航员来说是一种健康危害。将非金属结构材料整合到表面栖息地设计中可能会缓解其中一些问题。此外,结构可折叠以方便运输,以优化有效载荷体积、质量效率和资金限制。因此,充气结构正在受到研究,因为它们在发射时具有更高的包装效率、最佳的质量体积比和可以有效分散结构载荷和热量的大表面积。目前,只有两个充气气闸舱被部署在太空中。因此,迫切需要推进与充气结构相关的技术,为未来的任务(即阿尔特弥斯及以后的任务)提供更多选择。本研究重点关注了 NASA 兰利研究中心 (LaRC) 新兴技术的可充气月球栖息地应用及其获得太空资格所需的开发步骤。保龄球栖息地架构由 13 项 NASA LaRC 技术生成,其中五项被视为关键技术,五项被确定为增强技术,三项被归类为 Artemis 计划的转型技术。为了解决有效载荷限制问题,该研究还考虑了与当前 Artemis 将保龄球栖息地运送到月球的时间表相一致的暂定时间表。最终,保龄球栖息地主要解决了可充气月球栖息地的结构需求,这意味着必须改进与栖息地生活方式方面有关的主要领域。这些领域包括但不限于硬连接点、人类健康监测以及针对太阳质子事件的额外辐射防护。
Halima Bensmail卡塔尔计算研究所的目的:蛋白质的产生在诸如药物设计和蛋白质工程等领域具有广泛的应用前景,可以使用机器学习或深度学习,可以产生蛋白质序列。希望生成的序列具有良好的可折叠性,以便它们可以形成稳定的三维结构。此外,预期所需的蛋白质将表现出特定的功能特性,包括酶活性和抗体结合能力。大语言模型的进步和条件模型的整合已显着推动了蛋白质产生领域的进步。该模型(称为后代)将Uniprotkb关键字包含为2020年的条件标签。这些标签包括一个由各种类别组成的词汇,包括“生物过程”,“细胞成分”和“分子功能”。总共有条件的标签包含超过1,100个不同条款。在评估使用指标相似性,二级结构准确性和构象能产生的蛋白质序列时,它们表现出所需的结构特性。在2022年,受到生成变压器模型(例如GPT-X系列)的显着成就的启发,Protgpt2的发展出现了。值得注意的是,Protgpt2产生的蛋白质表现出符合天然原理的氨基酸倾向。看来Protgpt2已经获得了特定于蛋白质的语言。拟议的工作将重点介绍对这两种术语和Protgpt2的评估。涉及疾病和二级结构预测的评估表明,Protgpt2生成的蛋白质的绝大多数(88%)具有球形特征,与自然序列中的属性保持一致。在Protgpt2序列上采用AlphaFold会产生折叠的非思想结构,包括存在广泛的回路的存在以及当前结构数据库中不存在的以前看不见的拓扑结构。我们还将使用llms使用蛋白质序列作为输入来进行蛋白质功能预测,并为多种蛋白质任务(例如同源性预测)以及二级结构预测,蛋白质溶解度和蛋白质结晶微调模型,并将其与Sproberta进行比较。
征集创新和原创论文的主题领域包括(但不限于):模拟:具有模拟主导创新的电路;放大器、比较器、振荡器、滤波器、参考电路;非线性模拟电路;数字辅助模拟电路;传感器接口电路;MEMS 传感器/执行器接口、10nm 以下技术的模拟电路。数据转换器:奈奎斯特速率和过采样 A/D 和 D/A 转换器;嵌入式和特定应用的 A/D 和 D/A 转换器;时间到数字转换器;创新和新兴的转换器架构。数字电路、架构和系统*:微处理器、微控制器、应用处理器、图形处理器、汽车处理器、机器学习 (ML) 和人工智能 (AI) 处理器以及片上系统 (SoC) 处理器的数字电路、架构、构建模块和完整系统(单片、小芯片、2.5D 和 3D)。用于通信、视频和多媒体、退火、优化问题解决、可重构系统、近阈值和亚阈值系统以及新兴应用的数字系统和加速器。用于处理器的芯片内通信、时钟分配、软错误和容错设计、电源管理(例如稳压器、自适应数字电路、数字传感器)和数字时钟电路(例如 PLL、DLL)的数字电路。数字 ML/AI 系统和电路,包括近内存和内存计算以及针对新 ML 模型(如 Transformer、图形和脉冲神经网络以及超维计算)的硬件优化。图像传感器、医疗和显示:图像传感器;视觉传感器和基于事件的视觉传感器;汽车、激光雷达;超声波和医学成像;可穿戴、可植入、可摄取设备;生物医学传感器和 SoC、神经接口和闭环系统;医疗设备;微阵列;体域网络和身体耦合通信;用于医疗和成像应用的机器学习和边缘计算;显示驱动器、触摸感应;触觉显示器;用于 AR/VR 的交互式显示和传感技术。存储器:用于独立和嵌入式应用的静态、动态和非易失性存储器;存储器/SSD 控制器;用于存储器的高带宽 I/O 接口;基于相变、磁性、自旋转移扭矩、铁电和电阻材料的存储器;阵列架构和电路,以改善低压操作、降低功耗、可靠性、性能改进和容错能力;内存子系统内的应用特定电路增强、用于 AI 或其他应用的内存计算或近内存计算宏。电源管理:电源管理、电源输送和控制电路;使用电感、电容、和混合技术;LDO /线性稳压器;栅极驱动器;宽带隙(GaN / SiC);隔离和无线电源转换器;包络电源调制器;能量收集电路和系统;适用于汽车和其他恶劣环境的强大电源管理电路;LED驱动器。射频电路和无线系统**:用于接收器、发射器、频率合成器、射频滤波器、收发器、SoC和包含多个芯片的无线 SiP 的射频、毫米波和 THz 频率的完整解决方案和构建模块。创新电路、系统、设计技术、异构封装解决方案等,适用于既定的无线标准以及未来系统或新应用,例如传感、雷达和成像,以及提高频谱和能源效率的应用。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。RF 电路和无线系统**:用于接收器、发射器、频率合成器、RF 滤波器、收发器、SoC 和包含多个芯片组的无线 SiP 的 RF、毫米波和 THz 频率的完整解决方案和构建模块。创新电路、系统、设计技术、异构封装解决方案等,适用于既定的无线标准以及未来系统或新应用,例如传感、雷达和成像,以及那些可提高频谱和能源效率的应用。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。RF 电路和无线系统**:用于接收器、发射器、频率合成器、RF 滤波器、收发器、SoC 和包含多个芯片组的无线 SiP 的 RF、毫米波和 THz 频率的完整解决方案和构建模块。创新电路、系统、设计技术、异构封装解决方案等,适用于既定的无线标准以及未来系统或新应用,例如传感、雷达和成像,以及那些可提高频谱和能源效率的应用。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。以及提高频谱和能源效率的芯片。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。以及提高频谱和能源效率的芯片。安全:展示加密加速器的芯片(例如加密、轻量级加密、后量子加密、隐私保护计算、区块链)、智能卡安全、可信/机密计算、安全电路(例如 PUF、TRNG、侧信道和故障攻击对策、用于攻击检测和预防的电路和传感器)、资源受限系统的安全性、安全微处理器、安全存储器、模拟/混合信号电路安全(例如安全 ADC/DAC、RF、传感器)、安全供应链(例如硬件木马对策、可信微电子)、新兴技术的安全性以及用于逻辑/物理级安全的核心电路级技术。技术方向:集成光子学、硅电子-光子学集成等各个领域的新兴和新型 IC、系统和设备解决方案;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。硅电子-光子集成;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。硅电子-光子集成;用于计量、传感、计算等的量子器件;柔性、可拉伸、可折叠、可打印和 3D 电子系统;用于细胞和分子目标的生物医学传感器;远距离无线功率传输(例如射频和毫米波、光学、超声波);用于空间应用和其他恶劣环境的集成电路;用于非 CMOS 计算和机器学习的新型平台;集成超材料、替代设备平台中的电路(例如碳、有机、超导体、自旋等)。有线:用于有线系统的接收器/发射器/收发器,包括背板收发器、铜缆链路、芯片间通信、2.5/3D 互连、片上/封装上链路、用于存储器的高速接口;光学链路和硅光子学;用于提高数据速率、带宽密度、功率效率、均衡、稳健性、自适应能力和设计方法的探索性 I/O 电路;有线收发器的构建模块(包括但不限于 AGC、模拟前端、ADC/DAC/DSP、TIA、均衡器、时钟生成和分配电路(包括 PLL/DLL)、时钟恢复、线路驱动器和混合电路)。
设备摘要随着人口老龄化,老年性黄斑变性 (AMD) 等神经退行性疾病正在增多 [1]。在 AMD 中,视网膜中心的光感受器会退化和死亡,从而导致视力丧失。电子、微电子和纳米技术研究所 (IEMN) 和 2019 年成立的初创公司 Axorus 正在合作开发一种视网膜植入物原型,旨在恢复 AMD 患者的视觉能力。IEMN 开发了一种电子电路并申请了专利,该电路可以复制生物神经元的电信号。Axorus 已将这种“人工神经元”集成到光驱动的植入物中。本论文的一个目标是开发一种符合眼睛形状的薄可弯曲硅基板。它必须可弯曲以便于插入,并具有较大的植入物尺寸以提供最大的视野 [2][3]。我们的目标是突破基板减薄的极限,达到 10 μm 的厚度。在这个厚度下,硅应该是可弯曲的。本论文工作的另一个目标是选择一种能够储存的能源,并在无法使用光伏能源的情况下提供足够的能量来刺激生物神经元 [4][5]。该能源还必须具有生物相容性,使用寿命至少为 10 年。这将为使用人工神经元的其他应用铺平道路。植入物将适应具有严格尺寸限制的植入区域,并且对于无光照区域将自给自足。[1] « Dégénérescence maculaire liee à l'âge : prise en charge diagnostique et thérapeutique », Haute Autorité de Santé. https://www.has-sante.fr/jcms/c_1051619/fr/degenerescence-maculaire-liee-al-age-prise-en- charge-diagnostique-et-therapeutique。 [2] R. Dinyari、JD Loudin、P. Huie、D. Palanker 等 P. Peumans,“可弯曲硅视网膜植入物”,2009 年 IEEE 国际电子设备会议 (IEDM),美国马里兰州巴尔的摩,2009 年 12 月,第 1-4 页。doi:10.1109/IEDM.2009.5424291。[3] L. Ferlauto 等,“可折叠光伏宽视野视网膜假体的设计和验证”,Nat. Commun.,第 9 卷,第 1 期,第 992 页,2018 年 12 月,doi:10.1038/s41467-018-03386-7。 [4] Pozo、Garate、Araujo 等 Ferreiro,“能量收集技术和等效电子结构模型 - 评论”,电子学,第 8 卷,第 5 期,第 486 页,2019 年 4 月,doi:10.3390/electronics8050486。[5] MA Hannan、S. Mutashar、S. Samad 等 A. Hussain,“植入式生物医学设备的能量收集:问题与挑战”,生物医学工程在线,第 13 卷,第 79 页,2014 年 6 月,doi:10.1186/1475-925X-13-79。
自组装折纸神经探针,用于可扩展、多功能、三维神经接口 Dongxiao Yan 1*、Jose Roberto Lopez Ruiz 1*、Meng-Lin Hsieh 1、Daeho Jeong 1,2、Mihály Vöröslakos 3、Vittorino Lanzio 1、Elisa V. Warner 4、Eunah Ko 1、Yi Tian 1、Paras R. Patel 5、Hatem ElBidweihy 6、Connor S. Smith 6、Jae-Hyun Lee 2、Jinwoo Cheon 2、György Buzsáki 3、Euisik Yoon 1,2,5,7 ** 1 密歇根大学电气工程与计算机科学系,密歇根州安娜堡。 2 韩国首尔延世大学基础科学研究所 (IBS) 纳米医学中心和高级科学研究所纳米生物医学工程研究生课程 (Nano BME)。3 纽约大学朗格尼医学中心神经科学研究所,纽约,纽约州。4 密歇根大学计算医学和生物信息学系,密歇根州安娜堡。5 密歇根大学生物医学工程系,密歇根州安娜堡。6 美国海军学院电气与计算机工程系,马里兰州安纳波利斯。7 密歇根大学机械工程系,密歇根州安娜堡。* 同等贡献作者 ** 通讯作者摘要 柔性皮层内神经探针因其可减少组织反应而在高分辨率神经记录中延长寿命而备受关注。然而,传统的单片制造方法在以下方面遇到了重大挑战:(i) 扩大电生理记录位点的数量;(ii) 整合其他生理传感和调节;以及 (iii) 配置成三维 (3D) 形状以用于多面电极阵列。我们报告了一种创新的自组装技术,该技术允许实现灵活的折纸神经探针作为克服这些挑战的有效替代方案。通过使用磁场辅助混合自组装,可以将具有各种模态的多个探针以精确对准的方式堆叠在一起。使用这种方法,我们展示了一种多功能设备,该设备在单个柔性探针上集成了可扩展的高密度记录位点、多巴胺传感器和温度传感器。同时展示了大规模、高空间分辨率的电生理学以及局部温度感应和多巴胺浓度监测。通过使用最佳可折叠设计和毛细管力将平面探针缠绕在直径为 80~105 μm 的细纤维上,组装了高密度 3D 折纸探针。通过集成在 3D 折纸探针表面的神经元大小的微型 LED (μLED) 的照明可以实现定向光遗传学调控。我们可以识别探针周围 360° 的角度异质单元信号和神经连接。通过在行为小鼠中对 64 通道堆叠探针进行长达 140 天的长期记录来验证探针的寿命。借助所介绍的模块化、可定制的组装技术,我们展示了一种新颖且高度灵活的解决方案,以适应多功能集成、通道缩放和 3D 阵列配置。1. 简介增强记录能力和集成多模态是神经探针开发的两个基本需求。高通道数神经探针已证明其
创新和原始论文在主题领域中被征求来,包括(但不限于):模拟:具有模拟主导创新的电路;放大器,比较器,振荡器,滤纸,参考;非线性模拟电路;数字辅助模拟电路;传感器接口电路; MEMS传感器/执行器接口,低于10nm缩放技术中的模拟电路。数据转换器:nyquist速率和过采样A/D和D/A转换器;嵌入式和应用特异性A/D和D/A转换器;时间数字转换器;创新和新兴转换器体系结构。数字电路,体系结构和系统*:微处理器,微控制器,应用程序处理器,图形处理器,图形处理器,自动化处理器,机器学习(ML)和ARTIIFICIL(MORIFIFIFICERCENCES(SOCIC)和ARIFIFIFIFIFICENCESS(MOR)和ARIFIFIFIFIFIFICENCESS(MIC)和ARSIECENCES(MONIFICENCESS(a),数字电路,体系结构和系统*:数字电路,架构,构件,构件和完整系统(单片,chiplets,2.5D和3D)用于通信,视频和多媒体,退火,优化问题解决,重新选择系统的数字系统和加速器,接近和子阈值系统以及新兴应用程序。用于芯片内通信,时钟分布,软校园和耐变性设计的数字电路,电源管理(例如电压调节器,适应性数字电路,数字传感器)和数字时钟电路(例如,PLL,PLL,DLL,DLL)用于处理器。数字ML/AI系统和电路,包括新的ML模型,例如变形金刚,图形和尖峰神经网络以及超维计算的新型ML模型,包括近存储器和内存计算以及硬件优化。成像仪,医疗和显示:图像传感器;视觉传感器和基于事件的视觉传感器;汽车,LIDAR;超声和医学成像;可穿戴,可植入的,可耐用的设备;生物医学传感器和SOC,神经界面和闭环系统;医疗设备;微阵列;身体区域网络和身体耦合沟通;用于医疗和成像应用的机器学习和边缘计算;显示驱动程序,触摸感应;触觉显示; AR/VR的交互式显示和传感技术。内存:独立和嵌入式应用程序的静态,动态和非易失性记忆;内存/SSD控制器;高带宽I/O界面的回忆;基于相变,磁性,自旋转移扭矩,铁电和电阻材料的记忆;阵列体系结构和电路,以改善低压操作,降低功率,可靠性,提高性能和容错性;存储子系统中的应用特异性电路增强,用于AI或其他应用程序的内存计数或接近内存计算宏。电源管理:电源管理,电力传递和控制电路;使用电感,电容和混合技术进行切换模式转换器IC; LDO/线性调节器;门司机;宽带gap(gan/sic);隔离和无线电源转换器;信封供应调节器;能源收集电路和系统;适用于汽车和其他恶劣环境的强大电源管理电路; LED驱动程序。RF电路和无线系统**:RF,MM-WAVE和THZ频率的完整解决方案和构件,用于接收器,发射机,频率合成器,RF滤波器,收发器,SOCS和无线sips,并结合了多个chiplets。创新电路,系统,设计技术,异质包装解决方案等。用于已建立的无线标准以及未来的系统或新颖的应用,例如传感,雷达和成像,以及那些提高光谱和能量效率的应用程序。安全性:芯片展示加密加速器(例如,加密,轻度加密,Quantum Crypto,Quantum Crypto,隐私保护计算,区块链),智能卡安全性,可信赖/确定计算,确定性计算,安全循环(例如,安全循环,pufs,pufs,trngs,trngs,trngs,trngs offirention offertion offertion攻击),越来越多的攻击性攻击),该攻击性攻击性攻击性,并构成了攻击),该攻击性攻击性,越来越多的攻击),互联网和指示,攻击性,并构成了攻击),该攻击性攻击性,互联网和指标,互联网和指示,攻击性,互联网和指示。对于资源受限的系统,安全的微处理器,安全的记忆,模拟/混合信号电路安全性(例如,安全的ADC/DAC,RF,传感器),安全供应链(例如,硬件Trojan对策,可信赖的微电子电源),具有/核心技术的安全性和核心电路技术的安全性,以供型号/核心循环技术。技术方向:在各个领域的新兴和新颖的IC,系统和设备解决方案,例如集成光子学,硅电子 - 光子学集成;计量,传感,计算等量子设备。;灵活,可拉伸,可折叠,可打印和3D电子系统;细胞和分子靶标的生物医学传感器;无线功率传递距离(例如,RF和MM波,光学,超声波);用于空间应用和其他恶劣环境的IC;非电视计算和机器学习的新颖平台;集成的元物质,替代设备平台中的电路(例如碳,有机,超导体,自旋等)。有线:电线系统的接收器/发射机/收发器,包括背板收发器,铜钟链接,芯片到芯片通信,2.5/3D互连,芯片/包装链接,包装链接,高速接口,用于内存;光学链路和硅光子学;探索性I/O电路,用于提高数据速率,带宽密度,功率效率,均衡,稳健性,适应能力和设计方法;有线收发器的构建块(包括但不限于AGC,模拟前端,ADC/DAC/DSP,TIAS,TIAS,均衡器,时钟生成和分配电路,包括PLL/DLLS,时钟恢复,线驱动程序,驱动器和混合动力车)。