在过去,将图像栩栩如生被认为是魔术。在传统的中国故事“魔术刷妈的玛利安”中,作者想象着一支魔术笔可以直接绘制活着的照片。巧合的是,哈利·波特(Harry Potter)的故事创造了一个死去的祖先生活在墙壁绘画中的世界。除了小说之外,实现这一目标的探索从未停止。1878年,穆布里奇(Muybridge)提出了一个名为“马运动的马”的著名实验,该实验连续显示了一系列连续的跑步马的图片,可以被视为视频。随着数字设备的开发,当前方法试图使用计算机视觉算法[8,13,16,17,21,21,24,24,27,32,32,32,34,36,40,50]。但是,它面临着几个限制。一方面,这些方法通常集中在有限类别的动画对象上,例如流体[16、24、25],人毛[37]和人体/脸部[6,8,9,13,13,17,27,27,32,34,36,36,50]。由于每种特定类型的领域知识,这些方法通常具有完全可控制的场景能力。,例如,sadtalker [50]可以通过音频和给定的脸产生准确的人脸动画。text2cinemagraph [25]使用文本描述来阐明水的自然动画。对于控制能力,这些方法通常遵循通过自我监督分解学习视频,然后通过新驾驶信号进行动画的规则。但是,由于先验自然动画的限制,由于一般域知识的多样性,这些方法在一般图像空间中失败。与以前的内域图像动画不同,基于当前扩散的图像 - to-video(i2v)方法学会以最终的方式从图像中生成视频。多亏了文本对图像模型的大规模生成之前,即稳定扩散[29],这些方法[1,2,7,11,39]已证明了开放域图像动画的可能性。但是,它们生成的内容可能与给定的图像[1,2,11,39]不同,并且通常通过文本说明[1,2,39]或仅简单的空闲动画[7]产生简单的动作。这些缺点限制了其用于现实世界图像动画任务的应用程序,在该任务中,用户通常需要像以前的内构象中图像动画算法一样创建更可控制的视频。利用域中图像动画和图像到视频的几代,我们很好奇:是否有一个通用的图像动画框架
为提高微电网灵活资源利用率,满足不同场景下微电网的储能需求,提出一种基于双层优化的微电网集中式共享储能容量优化配置模型。首先,分析弹性微电网中共享储能与可控负荷的响应特性,设计满足多场景调节需求的集中式共享储能运行模式。然后,以集中式共享储能净收益最大为上层,以微电网内负荷支付成本最小为下层,构建双层优化配置模型。进一步采用多目标鲸鱼优化算法对双层优化模型进行求解。结果表明:通过协调微电网内可转移负荷与可削减负荷,提高共享储能利用率,共享储能可以共同满足多场景调节需求。
在各种应用中都使用了稳定的具有较大脉冲能量和峰值功率的稳定的固态脉冲激光源,从基础研究到工业材料加工,医学和电信[1-3]。使用饱和吸收器(SA)生成脉冲激光器已成为当今最受欢迎的方法。近年来,由于成功地应用石墨烯而刺激了许多具有分层结构的二维(2D)材料,因为它们具有超快速恢复时间,可宽带饱和吸收和简单制造过程的优势,因此已重新发现了有前途且有趣的SA材料[4-7]。div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> tinse友好型材料,由于其独特的特性,低毒性,低毒性和低成本和低成本和低成本[8,9],对通信,微电子,激光和非线性光学领域引起了广泛关注。由于具有可调的带隙特性,SNSE 2具有明显的宽带饱和吸收特性。几层和大散装SNSE2的间接带隙范围从1.07(〜1159 nm)到1.69 eV(〜734 nm),分别对应于1.84至2.04 eV的直接频段范围[10]。几层SNSE 2的间接带隙表示在1μm下可饱和吸收剂的能力。 Cheng等人在2017年首次报道了多层SNSE 2在1μm处的非线性光学特性,这是一种基于SNSE 2 -SA的被动Q开关波导固态激光器,其最小脉冲宽度为129 ns,脉冲宽度为129 ns,脉冲能量为6.5 NJ [10]。在2018年,Zhang等人。在2018年,Zhang等人。报告了基于SNSE 2 -SA [11]的高功率被动Q开关的YB掺杂纤维激光器。到目前为止,SNSE 2的非线性光学响应已通过不同波段的Q开关或模式的激光器进行了广泛研究[12-15]。但是,对固态激光器中SNSE 2的脉冲调制特征的研究还不够。
本文重点研究了基于模型预测控制 (MPC) 的智能微电网能源调度,该微电网配备不可控(即具有固定功率分布)和可控(即具有灵活和可编程操作)电器、光伏 (PV) 电池板和电池储能系统 (BESS)。所提出的控制策略旨在同时优化规划可控负载、共享资源(即储能系统充电/放电和可再生能源使用)以及与电网的能源交换。控制方案依赖于迭代有限时域在线优化,实施混合整数线性规划能源调度算法,以在随时间变化的能源价格下最大化太阳能自给率和/或最小化从电网购买能源的每日成本。在每个时间步骤中,解决由此产生的优化问题,提供可控负载的最佳运行、从电网购买/向电网出售的最佳能源量以及 BESS 的最佳充电/放电配置。
• 具有可控原子位点、纳米结构和介观结构的金属改性氧化物/沸石 • 通过分子前体热解的金属碳化物、氮化物、磷化物 • 具有可控形貌、成分和晶相的纳米结构材料的可扩展溶液合成
为了应对电动汽车行业目前和未来的增长,发展大规模、可靠和高效的锂离子电池回收行业对于确保嵌入贵重金属的循环性和确保技术的整体可持续性至关重要。正在开发的主要回收程序之一是基于湿法冶金。作为锂离子电池进行此过程之前的预处理步骤,必须将其停用以防止所含电能不受控制地释放。此停用步骤通常通过将电池深度放电至 0.0 V 来完成,而不是通常的 3.0 V 左右的下限。通常,深度放电是通过连接电阻或浸入盐溶液中来完成的。然而,由于放电电流与端电压成比例降低,这个过程可能非常慢,特别是如果要防止相当大的反弹电压。这项工作探讨了在放电速度、有效性和安全性方面更快放电程序的可行性。所提出的程序需要使用可控负载以恒定电流进行深度放电,然后立即施加外部短路。恒定电流放电期间的 C 速率会发生变化以研究其影响。短路施加于 0.0 V 或 1.0 V 的端电压。通过实验评估这两个工艺步骤的安全性。审查的主要安全风险是温度升高和随后的热失控风险,以及由于压力增加和膨胀导致电解质泄漏的风险。在实验工作中,两种类型的大尺寸方形 NMC811 电池从 0% 的 SoC 开始深度放电。实验仅限于单个电池。发现在 0% SoC 的固定电池中,深度放电区域可额外获得 4% 的额外容量。根据温度测量和文献综述,热失控风险评估为低。为了研究压力的上升,测量了所有电池的厚度,并测量了三个样品的原位压力。电解质泄漏风险评估为低。放电程序结束后一周内跟踪回弹电压和电池厚度。短路 30 分钟后,所有电池的回弹电压接近 2.0 V,但需要稍长的短路持续时间才能可靠地达到此阈值。总程序时间比其他放电程序短得多,同时仍然保持安全。
微电网是一种定制解决方案。每个微电网的配置和资产都是独一无二的,旨在解决特定挑战或实现特定目标。微电网的复杂程度和复杂程度也各不相同,通常包括关键负载和可控负载的混合,以及可控和不可控发电资产的混合,以及中央微电网控制器。公用事业公司开始探索微电网的所有权和运营,以实现社区弹性,尽管客户和第三方拥有的微电网目前更为常见。公司、大学和社区越来越多地选择开发和资助自己的微电网,以确保在停电事件期间继续提供电力服务。表 1 提供了不同类型微电网的定义特征。
微电网是一种定制解决方案。每个微电网的配置和资产都是独一无二的,旨在解决特定挑战或实现特定目标。微电网的复杂程度和复杂程度也各不相同,通常包括关键负载和可控负载的组合以及可控和不可控发电资产的组合,以及中央微电网控制器。公用事业公司开始探索微电网的所有权和运营,以实现社区弹性,尽管客户和第三方拥有的微电网目前更为常见。越来越多的公司、大学和社区选择开发和资助自己的微电网,以确保在停电期间继续提供电力服务。表 1 提供了不同类型微电网的定义特征。
注意:FTM2 涉及建立 PMA,其中包括客户电气设备内的分表连接点和单独的 NMI,从而能够为最终用户的可控资源启用不同的 FRMP。与 FTM1 一样,FTM2 允许最终用户的可控资源在连接点之间切换(允许跨连接点套利),或者建立完全独立的安排而无需切换(例如专用电动汽车充电)。最终用户可能在同一个主连接点后面拥有多个 PMA。在此示例中,由于可控资源都连接到次级连接点(如箭头所示),因此能量流在次级连接点处是双向的,而能量流对一般电气资源是单向的。在实践中,能量流将是单向的或双向的(从市场提取能量或向市场注入能量),具体取决于通过每个连接点连接的资源以及这些资源的使用方式。