概率机器学习利用可控的随机性来编码不确定性并启用统计建模。利用量子真空噪声的纯粹随机性,这是由于电磁磁场的流动,已经对高速和能量的随机光子元素表现出了希望。尽管如此,可以控制这些随机元素以编程可能的机器学习算法的光子计算硬件受到限制。在这里,我们实现了由可控的随机光子元件组成的光子概率计算机 - 光子概率神经元(PPN)。我们的PPN在带有真空级注入偏置的偏见的双态光学参数振荡器(OPO)中进行。然后,我们使用电子处理器(FPGA或GPU)进行了一个测量和反馈循环,以解决某些概率机器学习任务。我们展示了MNIST手写数字的概率推断和图像生成,它们是判别和生成模型的代表性示例。在两个实现中,量子真空噪声都用作随机种子来编码样品的分类不确定性或概率生成。此外,我们为通向全光概率计算平台的路径提出了一条路径,估计的采样速率约为1 Gbps,能源消耗约为5 FJ / MAC。我们的工作为可扩展,超快和能量良好的概率机器学习硬件铺平了道路。
稳定、可重复、可扩展、可寻址和可控的混合超导体-半导体 (S-Sm) 结和开关是门控量子处理器的关键电路元件和构建块。分离栅电压产生的静电场效应有助于实现纳米开关,这些纳米开关可以控制基于二维半导体电子系统的混合 S-Sm 电路中的电导或电流。这里,通过实验展示了一种新颖的大规模可扩展、栅极电压可控的混合场效应量子芯片的实现。每个芯片都包含分离栅场效应混合结阵列,它们用作电导开关,由与 Nb 超导电子电路集成的 In 0.75 Ga 0.25 As 量子阱制成。芯片中的每个混合结都可以通过其相应的源漏极和两个全局分离栅接触垫进行控制和寻址,从而允许在其 (超) 导电和绝缘状态之间切换。总共制造了 18 个量子芯片,其中有 144 个场效应混合 Nb-In 0.75 Ga 0.25 As 2DEG-Nb 量子线,并研究了低温下多个器件的电响应、开关电压(开/关)统计、量子产率和可重复性。提出的集成量子器件架构允许控制芯片上大型阵列中的单个结,这对于新兴的低温量子技术非常有用。
外泌体是由各种细胞分泌的直径为30至150纳米的囊泡。7 它们通过表面蛋白信号传导或转移所含的脂质、核酸和其他生物分子在细胞间传递信息。外泌体的性质取决于其细胞表面蛋白和其携带的生物分子,这使得它们在开发新的运输方法中受到特别关注(图1)。在他们的研究中,Wan等人6精确安全地在从肝星状细胞纯化的外泌体内运输大型RNP复合物。然而,外泌体的提取效率并不令人满意。此外,来自不同细胞的天然获得的外泌体具有不同的组成,不同批次之间的批次效应也不同。此外,外泌体的直径变化是不可控的。这些缺点限制了天然外泌体载体的广泛使用,这使得有必要开发更好的纳米载体和可控的运输策略。 5, 8 细胞膜伪装纳米技术是一种新兴的递送策略,可能是纳米药物运输的更好选择。通过超声波或挤压方法,从不同细胞系中提取的细胞膜可以涂覆在纳米颗粒周围,尺寸可控,输出率高。膜伪装纳米颗粒具有更长的循环时间,对隐藏在生物相容性膜下的异源抗原的不良影响较低。因此,通过结合各种
Arduino Mega 2560 凭借其全面的集成和强大的功能而占据着举足轻重的地位。它利用降压转换器将电压有效降至安全可控的 5V 直流电压,非常适合微控制器的使用。Arduino 上的某些数字引脚可以与不同的继电器建立连接,从而实现对鼓风机、排气和加热组件的可编程控制。这种自动化和精确度的结合显著提升了烘干机的运行能力。此外,ULN2003A 驱动器的使用体现了先进的电源管理策略,使 Arduino 能够
摘要:在当今的电力系统格局中,可再生能源 (RE) 资源发挥着关键作用,尤其是在住宅领域。尽管这些资源非常重要,但可再生能源资源的间歇性受多变天气条件的影响,对其作为能源的可靠性构成了挑战。为应对这一挑战,集成储能系统 (ESS) 成为一种可行的解决方案,能够在高峰发电期间储存剩余能源,并在短缺期间释放。ESS 面临的一大挑战是如何高效地设计 ESS。本文重点介绍智能家居环境中的分布式电力流系统,包括不可控的发电机、不可控的负载和多个储能单元。为了应对最小化 ESS 中能量损失的挑战,本文提出了一种新方法,称为节能存储容量与损耗减少 (SCALE) 方案,该方法将多负载功率流分配与负载转移算法相结合,以最小化能量损失并确定最佳能量存储容量。使用线性规划技术形式化了最佳能量存储容量的优化问题。为了验证所提出的方案,采用了冬季和夏季智能家居环境中的真实实验数据。结果表明,所提出的算法在显着减少能量损失(特别是在冬季条件下)和确定最佳能量存储容量方面非常有效,能量损失减少了 11.4%,最佳能量存储容量减少了 62.1%。
每一天都有关于网络攻击的新闻。恐惧蔓延,许多错误观念流传。这项调查旨在展示如何将所有这些关于网络的不确定性转化为可控的风险。在回顾网络风险的主要特征之后,我们考虑了网络空间的三个层次:硬件、软件和心理认知层。我们问自己,这种风险与其他风险有何不同,建模是如何解决的,需要如何发展,以及网络风险管理有哪些多方面的方面。这项广泛的探索描绘了一门正在形成的科学,并指出了建设一个有韧性的社会需要解决的问题。
虽然新的可再生能源设施的成本可能低于化石燃料选项,但当将能源储存纳入计算时,价值主张就消失了。虽然可充电电池具有巨大的未来潜力,但成本尚未下降到使电池能够整夜供电的水平。各国需要可调度的电源,这些电源是可控的(发电电源可以根据系统的需求以最大容量或介于两者之间的任何容量运行)、稳固的(高度确信发电容量可根据需要提供)并且具有所需的灵活性(发电可以根据需要增加或减少容量以满足供应要求)。
系统集成简便,运行可靠 Cambridge Technology 伺服装置集成了全面的状态监控和系统调节电路,这些电路部署在通电、断电和所有大小移动过程中,以确保一致可靠的系统控制并防止潜在的系统损坏。对于系统调试和与其他硬件的集成,伺服装置提供位置、速度和错误输出信号。检测到几种错误状态,包括位置过高、RMS 功率过大、位置检测器信号丢失和功率丢失。如果检测到故障,电子设备将立即发出故障信号并以安全可控的方式关闭定位系统。