量子相干性是量子力学的一个基本特征,允许量子态叠加,是量子信息处理的资源。非同质粒子和同质粒子的相干性以根本不同的方式出现。对于后者,存在与不可区分性相关的独特贡献,而非同质粒子则不会出现这种贡献。在这里,我们通过光学装置通过实验证明了这种对量子相干性的额外贡献,表明其量直接取决于不可区分性的程度,并在量子相位鉴别协议中利用了它。此外,设计的装置允许用光子模拟费米子粒子,从而评估交换统计在相干性产生和利用中的作用。我们的实验证明,独立的不可区分粒子可以为量子增强计量学提供可控的相干性和纠缠资源。
传统上,太阳能被认为是一种非稳定发电来源,因为它仅在运营设施控制范围之外的某些条件下可用,因此不能指望其可靠性。稳定发电是一种可靠且可控的能源,可以全天候、每周 7 天发电。然而,由于技术的进步、电池存储的使用以及太阳能发电和夏季高峰需求的共存,太阳能现在被用于稳定发电能力,可以依靠它来服务客户,并有助于推迟新的化石燃料发电厂的建设。在未来十年,佛罗里达州预计的 15,894 兆瓦可再生能源发电总量中,约有三分之一被视为稳定发电。预计这一趋势将继续下去,因为具有成本效益的可再生能源发电形式将改善该州的燃料多样性组合并减少对化石燃料的依赖。9
从获得诺贝尔奖的 CRISPR 基因编辑方法的突破到 COVID-19 mRNA 疫苗的开发,操纵生物分子的能力已成为过去十年中科学和医学领域最重大的进步之一。这些新生物技术需要精确了解现有的分子机制,才能以可控的方式模拟这些过程。日内瓦大学 (UNIGE)、多特蒙德马克斯普朗克分子生理研究所和杜塞尔多夫海因里希海涅大学的国际团队合作发现了某些致病细菌将致命酶注入宿主的机制的关键细节。对这一过程背后不同步骤的详细分子理解表明 Tc 毒素在生物技术中具有潜在的应用,例如生物医学设备和生物农药。这些研究结果发表在《科学进展》上。
可控的方式。[6] 然而,自上而下的技术不可扩展,且大多数技术耗时耗力,从而阻碍了它们的潜在应用。特别是手性微结构可以通过调制飞秒激光焦点的单次曝光快速制造。[7] 其几何形状严格由可实现的结构化焦点决定,并且得到的表面质量相当差。相反,自下而上的方法提供了一种经济高效且可扩展的替代方法,通过由不同材料(如共聚物、[8] 肽、[9] 纳米粒子 [10] 和 DNA 四面体 [11] 制成的亚基的顺序自组装来创建分层纳米结构。不幸的是,由于自发自组装过程的固有特点,对几何形状、空间排列、规律性和螺旋性的精确控制非常困难。自上而下和自下而上相结合的混合制造技术的最新进展有望克服上述一些限制。[12] 特别是,通过介导弹性毛细管相互作用的毛细管力驱动自组装引起了人们的极大兴趣,因为它具有简单性和可扩展性的独特优势,[13] 并且在一定程度上已用于混合制造策略。基于光刻的技术已经实现中尺度刷毛的制造,并且通过利用弹性毛细管聚结已经得到高度有序的螺旋簇。[14] 然而,由于圆形原纤维具有旋转对称性,因此单个簇所实现的手性是随机的。虽然可以通过将横截面渲染为矩形来获得特定的手性重排,但手性的可调性仍然有限。利用电子束光刻技术实现10纳米级的纳米柱,然后通过毛细管力诱导的纳米内聚力进行自组装。[15] 利用多光束干涉光刻技术,结合溶液蒸发过程中的毛细管力,制备并组装大面积图案化微柱。[16] 我们之前的研究表明,可以利用毛细管力来驱动直柱生成具有高度可控性的分级微结构。[17] 然而,由于毛细管力在微尺度上很难利用,它们都无法实现可控的手性结构。因此,开发一种简便、可控、高效的功能手性结构制备方法是十分有必要的。
不断增长的人口和不断变化的环境引起了全球粮食安全的重大关注,目前几种重要农作物的改善率不足以满足未来需求1。这种缓慢的改善率部分归因于作物植物的长代时代。在这里,我们提出了一种称为“速度育种”的方法,该方法大大缩短了生成时间并加速了繁殖和研究计划。速度繁殖可用于春季麦(Triticum aestivum),硬脂小麦(T. durum),大麦(大麦(Hordeum vulgare)),鹰嘴豆(Cicer arietinum)和Pea(Pisum sativum)和4代Canola(brassica napus),代替2-3的情况下,可用于实现多达6代的春季。 我们证明,完全封闭的,可控的环境生长室中的速度繁殖可以加速植物的发展,包括成人植物特征的表型,突变研究和转化。 在温室环境中使用补充照明可以快速生成单个种子下降(SSD),并可能适应大规模的农作物改进计划。 通过发光二极管(LED)补充照明节省成本。 我们设想将速度育种与其他现代作物育种技术相结合的巨大潜力,包括高通量基因分型,基因组编辑和基因组选择,从而加速了作物的改善速度。可用于实现多达6代的春季。我们证明,完全封闭的,可控的环境生长室中的速度繁殖可以加速植物的发展,包括成人植物特征的表型,突变研究和转化。在温室环境中使用补充照明可以快速生成单个种子下降(SSD),并可能适应大规模的农作物改进计划。通过发光二极管(LED)补充照明节省成本。我们设想将速度育种与其他现代作物育种技术相结合的巨大潜力,包括高通量基因分型,基因组编辑和基因组选择,从而加速了作物的改善速度。
摘要简介:由于生物医学的最新进展和对疾病分子机制的日益了解,医疗保健方法趋向于预防和个性化医疗。因此,近几十年来,微流体系统等跨学科技术的利用显着增加,以提供更准确的高通量诊断/治疗方法。方法:在本文中,我们将回顾微流体技术的创新摘要,以改进个性化的生物分子诊断,药物筛选和治疗策略。结果:微流体系统通过提供可控的流体流动空间,细胞的三维生长和分子实验的小型化,成为个性化健康和治疗领域的有用工具。这些条件使得开展以下研究成为可能:疾病建模,药物筛选和提高诊断方法的准确性。结论:微流体设备由于能够以小样本量进行诊断测试、降低成本、实现高分辨率和自动化,已成为有前途的即时诊断 (POC) 和个性化医疗仪器。
电子邮件:oleksandrmalyi@gmail.com摘要:传统上,据信,化学计量化合物的形成被认为是增长效应,而不是系统的固有趋势。在这里,使用LA 3 TE 4的示例,我们证明,在N型间隙中,主带边缘和主导带内部的Fermi水平之间具有较大的内部间隙,Fermi-Level不稳定可以发展,从而减少了受体缺陷的形成能量。具体来说,LA 3 TE 4中的LA空位自发形成以产生受体状态,并通过电子孔重组从主导带中取出一小部分自由载体。如此独特的自兴奋剂机制允许稳定具有不同电子特性的一系列范围的远距离LA 3-X TE 4化合物。此外,我们还展示了如何将控制合成条件用作达到目标功能的旋钮,包括可控的金属对绝缘体过渡。
1. 为国税局提供解决复杂逃税行为所需的资源。总统税务管理工作的第一步是持续多年重建国税局,包括在未来十年内额外投入近 800 亿美元的资源。国税局将以可控的方式增长(每年不超过 10% 左右),但也将有一定的资金用于进行固定成本较大的投资——例如现代化信息技术、改进数据分析方法以及雇用和培训专门从事复杂执法活动的代理人。这将弥补国税局在过去十年中失去的阵地。在此期间,国税局的预算下降了约 20%,导致其员工队伍持续减少,尤其是负责审查高收入和全球高净值个人以及复杂结构(如合伙企业、多层级直通实体和跨国公司)的专业审计师。
在用于治疗复发性霍奇金淋巴瘤 [5,6] 的 Brentuximab vedotin (Adcetris) 和用于治疗 HER2 + 转移性乳腺癌 [7,8] 的 T-DM1 (Kadcyla) 获得美国食品药品管理局 (FDA) 临床批准的背景下。所谓的“魔弹”最初由 Paul Ehrlich 构想 [9],旨在将小分子药物的毒性与抗体的靶向能力结合起来,以提高总体疗效和治疗指数。[10–15] 尽管概念简单,但 ADC 的开发面临着若干挑战,包括可控的毒性、均质结合和有限的药物有效载荷能力。对于 ADC 来说,药物抗体比 (DAR) 和靶向能力之间的平衡是必需的,以降低候选药物的损耗率。DAR 非常高的 ADC 可能会降低对靶抗原的识别。 [16–19] 因此,开发具有高最大耐受剂量和高选择性的 ADC 是非常有必要的。[20–22]
摘要。在这项研究中,已经开发了可控的压缩成型过程,用于生产可变的厚度聚氨酯心脏瓣膜。为压缩成型过程建立了一个实验设施。添加剂制造的聚合物模具(AM)用于确定成功生产聚氨酯心脏阀的合适设计配置和测试过程参数。实验,以研究变化压缩成型参数的影响。由于压缩模具能够产生具有控制厚度的薄壁部分,因此实验结果表明,良好控制的压缩成型技术是浸入成型过程的可行替代方法。AM聚合物模具表明,该过程可用于自动实验设施中,以创建工作原型聚氨酯心脏阀。AM聚合物模具表明,可以获得模具布局的合适设计配置并创建工作原型聚氨酯心脏阀。