a 荷兰乌得勒支 Princess Ma´xima 儿科肿瘤中心 b 德国柏林夏利特医学院儿科血液学和肿瘤学系 c 瑞士巴塞尔霍夫曼-罗氏公司 d 荷兰阿姆斯特丹大学医学中心肿瘤基因组学系 e 美国印第安纳州印第安纳波利斯礼来公司 f 德国海德堡霍普儿童癌症中心 (KiTZ)、德国癌症研究中心 (DKFZ)、德国癌症联盟 (DKTK) 和大学医院 g 美国纽约州纽约辉瑞公司辉瑞治疗创新中心 h 法国维尔瑞夫巴黎萨克雷大学古斯塔夫鲁西研究所 i 德国柏林健康研究所 j 德国癌症联盟 (DKTK)、柏林合作站点和德国癌症研究中心 (DKFZ) k 实验和临床研究中心(ECRC)德国柏林 MDC 和柏林 Charite´ 医院 l 荷兰乌得勒支大学药学系
稀释,超速原子气体为研究集体量子性能提供了一个绝佳的平台,因为它们的可操作性和相互作用的相对简单特征。在这种情况下,Bose-Einstein冷凝物的二元不混合混合物显示出异国情调的激发,例如量子巨大的涡流(即涡流的核心由少数群体填充)。量子涡旋不仅具有超流量背景下的基本利益,而且还具有宇宙学,超导性,非线性光学的类比,并且可能与量子霍尔效应有关。涡流质量的出现是混合物的典型特征,但也可能是由于有限的温度效应或杂质引起的,并导致令人着迷的现象。在论文中,我们着重于两种不同的肺泡物种混合物中巨大涡旋的二维动力学,具有接触相互作用和硬壁圆形电位。我们通过变异的拉格朗日方法得出了n v巨大涡流的点状模型,并将其应用于偶联对大规模涡流动力学的效果的研究。在此基础上,在不平衡的涡流质量的情况下,我们发现并表征了两涡轨轨迹的一些显着解决方案。我们根据描述混合物的(平均场)Gross-Pitaevskii方程来验证我们的分析结果。我们对不平衡涡旋对的表征导致了引人入胜的动力学状态的识别,从而使微观涡流质量允许其位置和预动力频率进行间接度量。随后,我们通过考虑填充成分的量子隧穿来扩展涡流对的研究以包括时间依赖性涡流质量。通过数值模拟,我们发现该系统具有宏观动力学,导致了骨化约瑟夫森连接(BJJ)。bjjs的动力学表现出具有超导性约瑟夫森连接的类比,并观察到了光势中相干的玻色气体。在BJJS中,中性原子的相互作用特征显示出新的效果,例如宏观量子自我捕获。值得注意的是,我们发现我们的两涡体系统显示出表征BJJ的所有(非线性)现象,并且随着时间的流逝,它是稳健且稳定的。我们还得出了BJJ的相应Bose-Hubbard模型及其均值近似,从而为模型的系数提供了一些分析表达式,这是重要系统参数的函数。我们的工作为令人兴奋的前景开辟了道路,例如研究涡旋项链和格子中填充成分的隧穿,杂物和不对称的效果是由潜在的不同涡流核心大小,多重量化量化涡流的包含以及对Fermi超级氟化物扩展的范围。
Plasan 是首批提供基于 N/GVA 平台的公司之一。使用 Plasan 独特的车载电子解决方案,SandCat 系列已准备好安装任何系统和子系统。集成过程将更加轻松快捷。Plasan 的车载电子基础设施控制、监控和保护车载所有电子系统以及汽车子系统和传感器。Plasan 的车载电子专注于结合汽车和任务系统可操作性,可提供前所未有的态势感知水平,有助于提高安全性和保障性,提高单车、战斗队以及整个车队的可操作性。
ASV的框架基于一对泡沫填充的玻璃纤维壳,如图2所示,与形成浮桥相连。这种设计允许轻巧但浮力的船体,即使玻璃纤维壳受损,它们也可以保持正浮力。ASV配备了四个蓝色机器人T-200推进器,从策略上安装的角度约为135度,相对于船体中心线。将其位于弓箭附近的每个浮桥龙骨的龙骨上,该配置提供了自动运动,从而允许ASV精确有效的可操作性。ASV的推进器通过动态调整其旋转方向和速度来实现纵向,横向和旋转运动,提供精确且通用的可操作性,如图3所示。
电力系统 (EPS) 作为生产设施具有许多特点,其中最重要的是电力生产过程与任何其他生产过程有着根本的不同。这种不同之处在于,在能源领域,能源生产、分配和消费的循环是同时进行的。因此,如果没有消费者对电力的需求的相应变化、高压电线和配电网为消费者提供电力的准备就绪,就无法改变电力生产。EPS 运行面临的最重要挑战是最大限度地高效地重新分配所生产的能量,即协调不同时间间隔的发电和消费计划。消费过程 (负荷计划) 是不均匀的,这取决于人们的生活节奏、消费性质等。提高 EPS 可靠性和模式可控性的最重要方法之一是高效地重新分配和积累所生产的能量。在全球大型电力供应站的运行实践中,解决电力消耗不均的问题,是通过建立专门的可机动电力设备(调峰电厂、燃气轮机电厂),或者利用在高峰时段消耗电力的储能系统(核电站)来实现的。
霍尼韦尔 Primus ® Epic 2.0 航空电子系统针对单人和双人驾驶舱进行了量身定制,以提高安全性和可操作性。
大挑战安全和可操作性演示与公共/私人联合示范计划SK Telecom是加入与Joby Aviation合作的Grand Challenge的参与者之一
摘要:本文提出了一种基于视觉的自适应跟踪和降落方法,用于多轨无人机(UAV),该方法旨在在推进系统故障的情况下进行安全恢复,从而降低了可操作性和响应能力。该方法解决了外部干扰(例如风力和敏捷目标运动)所带来的挑战,特别是考虑了由推进系统故障引起的可操作性和控制限制。在我们先前在执行器故障检测和耐受性方面的研究中,我们的方法采用了修改的自适应纯追求指导技术,并具有额外的适应性参数来说明可操作性的降低,从而确保对移动物体的安全跟踪。此外,我们提出了一种自适应着陆策略,该策略适应跟踪偏差并最大程度地减少偏离靶向降落,这是由于横向跟踪误差和延迟响应引起的,并使用侧向偏置依赖依赖于偏置的垂直速度控制。我们的系统采用基于视觉的标签检测来确定与无人机相关的无人接地车辆(UGV)的位置。我们在中期紧急着陆情况下实施了该系统,其中包括对紧急降落的执行者健康监测。广泛的测试和模拟证明了我们方法的有效性,大大推动了由于执行器故障而导致具有受损控制权的无人机的安全跟踪和紧急登陆方法的发展。