•专门的公司和政府高级领导人(C-Suite级别)应举行虚拟的每周会议,以领导,管理和指导CICC的有效人员配备和运作。•最初CICC成员公司和情报分析师和相关机构的代表的初级高管将提供指导。•CICC成员公司将为初级高管提供正确的功能和公司系统的经验,以了解信息/情报及其影响。在这个角色中,他们将帮助快速提供见解,以确定必要的缓解措施。•CICC成员公司还将提供网络分析师来监视其公司网络并访问自愿性CICC数据湖(其中成员公司将共享信息,例如NetFlow或运营技术网络数据),以比较威胁指标。•来自IC中多个机构的情报分析师和工程师将参与其中,相关联邦机构(例如,SSA)的代表应在观察场上。
随着世界各地实验室中实现的量子信息处理器越来越强大,对这些设备的稳健性和可靠性描述现在比以往任何时候都更加紧迫。这些诊断可以采取多种形式,但最受欢迎的类别之一是断层扫描,其中为设备提出了一个底层参数化模型,并通过实验推断出来。在这里,我们引入并实现了高效的操作断层扫描,它使用实验可观测量作为这些模型参数。这解决了当前断层扫描方法中出现的表示模糊问题(规范问题)。解决规范问题使我们能够在贝叶斯框架中有效地计算实现操作断层扫描,从而为我们提供了一种自然的方式来包含先验信息并讨论拟合参数的不确定性。我们在各种不同的实验相关场景中展示了这种新的断层扫描技术,包括标准过程断层扫描、拉姆齐干涉测量法、随机基准测试和门集断层扫描。
本文概述了在基于效果的目标确定过程中描述可操作知识构建相关的建模问题。这些问题的核心是需要考虑未来针对第四代对手的联盟行动的各种政治、军事、经济、社会、信息和基础设施维度。这种类型的战争反映了一个棘手的问题空间,其中任何指挥、控制、情报、监视和侦察 (C2ISR) 系统面临的一个主要挑战是在这个多维战场空间中正确制定行动框架。本文介绍了作者在当前研究中解决的一些建模问题:(1) 将指挥意图目标抽象分解为关键重心、支持这些重心的功能元素以及组成每个功能元素的战场空间节点;(2) 通过 Leontief 输入输出矩阵表示感知的数据/框架模型,使建模者能够近似每个参与者的隐性知识; (3) 明确描述 C2ISR 组织内的协作,反映不同参与者的隐性知识矩阵如何组合使用;(4) 考虑各种协作障碍——技术、认知、社会和组织——这些障碍影响 C2ISR 识别、链接和促进特定参与者代表不同利益相关者和专业领域的过程;(5) 评估 C2ISR 系统性能,评估内容包括计划的目标行动实现总体指挥意图目标的程度,以及由于对目标决策不符合交战规则和其他作战约束审查不充分而导致的意外负面后果程度。这种建模策略允许建模者构建透明的“审计线索”,将国家在信息技术、领导力发展、员工培训、人事管理和人员配备政策方面的投资与 C2ISR 系统产生的可操作知识的质量联系起来。
关于Zscaler Zscaler(NASDAQ:ZS),可以加速数字转换,以使客户更加敏捷,高效,弹性和安全。ZScaler Zero Trust Exchange通过将任何位置的用户,设备和应用程序安全地连接到网络攻击和数据丢失,以保护数千个客户免受网络攻击和数据丢失。分布在全球150多个数据中心上,基于SSE的零信任交换是世界上最大的内联云安全平台。在zscaler.com上了解更多信息,或在Twitter @zscaler上关注我们。
如果出现复杂或不寻常的感染/情况,英国卫生服务局 (UKHSA) 将宣布并领导疫情。英国卫生服务局将召集 IMT,卫生经济领域的主要工作人员将参加。各种机构可能会联系社区卫生保护小组 (CHPT) 报告疫情,通常包括:英国卫生服务局、护理/养老院工作人员、学校/托儿所、NHS 信托机构的 IPC 小组、微生物学/病毒学或环境卫生官员。通常,CHPT 会确认并宣布局部较小的疫情,并由当地领导应对工作。在确认并宣布疫情后,如果需要,ULHSA 将就是否需要和紧迫性召集 IMT 做出决定。该决定应以风险评估为指导。DPH 将领导曼彻斯特本地疫情应对工作。这可以委托给公共卫生顾问(健康保护)或 CHPT 的其他适当成员。当决定不宣布疫情爆发或不成立 IMT 时,应在适当的时间间隔通知 DPH/顾问,以确定是否随后需要正式宣布疫情爆发。附件 6 中提供了 IMT 成员的建议名单,该名单嵌入在情景计划中。这不是一份详尽的清单,根据疫情爆发的性质,可能需要其他组织的代表。
1 Candiolo 癌症研究所,FPO-IRCCS,Candiolo,10060 都灵,意大利; concetta.dambrosio@unito.it (CD); jessica.erriquez@ircc.it(日本语); sonia.capellero@ircc.it (SC); mittica@aslvco.it(总经理); eleonora.ghisoni@ircc.it(EG); elena.maldi@ircc.it(EM); enrico.berrino@ircc.it (EB); tiziana.venesio@ircc.it(电视); riccardo.ponzone@ircc.it (RP); marco.vaira@ircc.it (MV); giorgio.valabrega@ircc.it (GV); martina.olivero@unito.it(MO)2 都灵大学肿瘤学系,Candiolo,10060 Torino,意大利 3 都灵大学分子生物技术和健康科学系,10126 Torino,意大利;maddalena.arigoni@unito.it(MA);ra ffi aele.calogero@unito.it(RAC)4 意大利都灵健康与科学城,10126 Torino,意大利;fulvio.borella87@gmail.com(FB);d.katsaros@libero.it(DK);sprivitera@cittadellasalute.to.it(SP);mribotta@cittadellasalute.to.it(MR)5 都灵大学生命科学与系统生物学系,10125 Torino,意大利; giovanna.dinardo@unito.it 6 都灵大学医学科学系,10126 都灵,意大利 7 剑桥大学,剑桥 CB2 0XZ,英国;Douglas.Hall@cruk.cam.ac.uk (DH);mercedes.jimenez-linan@addenbrookes.nhs.uk (MJ-L.);alp37@cam.ac.uk (ALP);James.Brenton@cruk.cam.ac.uk (JDB) 8 英国癌症研究中心剑桥研究所,剑桥 CB2 0RE,英国 * 通信地址:mariaflavia.direnzo@unito.it 或 mariaflavia.direnzo@ircc.it;电话:+ 39-011-993-3343 † 这些作者对本文的贡献相同。
摘要:在过去的几年中,已经为患有高风险、复发或难治性恶性肿瘤的儿科患者开发了各种精准医疗计划,通过全面的分子分析选择患者进行靶向治疗。在这篇综述中,我们描述了这些举措的特点,展示了分子驱动的精准医疗的可行性和潜力。在相当一部分患者中发现了可操作事件,尽管由于缺乏可操作改变的标准化定义和使用的不同分子分析策略,比较结果很复杂。第一个针对儿童癌症的生物标志物驱动试验已经启动,但到目前为止,精准医疗对临床结果的影响仅针对少数患者进行了报道,并显示出对一些患者的临床益处。未来的前景包括结合液体活检和免疫监测等新方法以及包括组合策略在内的创新协作试验设计,以及开发专门针对儿童恶性肿瘤异常的药物。
15% 至 20% 的肺癌患者会发生表皮生长因子受体 (EGFR) 突变。EGFR 突变型肺癌患者通常使用抗癌药物(称为 EGFR 抑制剂 (EGFRi))治疗,但由于获得性耐药性,治疗常常失败。本文表明,表观遗传抑制因子 CBX5 的缺失通过涉及转录因子 E2F1 及其靶标抗凋亡蛋白 BIRC5(survivin)上调的机制赋予 EGFRi 耐药性。我们证明,通过恢复 CBX5 表达或抑制 BIRC5 来药理学抑制该 CBX5-E2F1-BIRC5 轴代表了治疗 EGFRi 耐药性肺癌的一种治疗方法。我们的研究结果为因出现获得性耐药性而 EGFRi 治疗失败的 EGFR 突变型肺癌患者提供了潜在的治疗机会。