保留所有权利。未经版权持有人书面许可,不得以任何形式复制本出版物的任何部分(包括以电子方式复印或存储在任何介质中,无论是否临时或偶然用于本出版物的其他用途),除非根据《1988 年版权、外观设计和专利法》的规定或根据版权许可代理有限公司颁发的许可条款,地址为英国伦敦托特纳姆法院路 90 号 W1P 9HE。申请版权持有人书面许可复制本出版物的任何部分,应向出版商提出
本报告根据 OLRT RAM 计划 [3] 编制,旨在吸收和发展项目 RAM 报告 [4]、[5]、[61、[7]、[8] 中提出的零件数量可靠性预测与 FMEA 建模 FMEA 建模 [11)、[12)、[131、[14)、[15)、[16],以得出铁路级 RAM 分析,预测服务可用性性能、扰动水平,并可作为未来开发和优化维护策略的先兆。
美国海军每年花费数百万美元用于维护、修理和大修 (MRO) 程序,以维护其喷气式战斗机发动机系统。因此,美国海军一直致力于降低这些系统总体维护成本的方法。本论文将研究美国发动机制造商如何将可靠性、可维护性和可持续性 (RM&S) 设计到 ZM1O 发动机系列中,以及这些设计工作的结果对系统的用户和维护者意味着什么。本论文重点关注整个发动机计划中使用的政策、技术、流程和工具以及实践,以确定发动机计划中是否解决了维持问题。使用的数据是每 1000 有效飞行小时 (EFH) 的非计划发动机拆卸 (UER) 和每 1000 EFH 的计划发动机拆卸 (SER),以比较 ZM10 发动机系列不同型号的可持续性。根据美国海军提供的数据,我无法得出明确的结论,即衍生发动机系统是否采用了更先进的维持功能,以降低 ZM 10-2 发动机系统的整体生命周期成本。
认识到需要帮助项目经理更好地理解安全和保障技术,Gary G. Kelm、Frank J. Barber 和 Frank J. Barina 编写了附录 B。Kam L. Wong 使用 Charles Ryerson 和 Irwin Quart 提供的信息和概念编写了我们之前的工作簿 RP-1253 的第一章;感谢 North-Holland, Inc. 允许重印部分图表和文本。感谢 Fredrick D. Gregory、Michael A. Greenfield 博士、Peter Rutledge 博士、Vernon W. Wessel 和 Frank Robinson, Jr. 的鼓励和支持,让专业开发团队为我们的 NASA 安全培训课程 017 开发这本新工作簿。Henry A. Malec 已经去世,我们将怀念他。人们将永远记住他为推动可靠性协会所做的努力。他编写了本书原版的第 7、10 和 11 章。Martha Wetherholt 和 Tom Ziemianski 编写了第 8 章和第 9 章。感谢数字设备公司的数字出版社提供第 7 章中的软件评估材料。Vincent R. LaUi,现任美国宇航局格伦研究中心(俄亥俄州克利夫兰)风险管理顾问,编写了一些新章节和附录 C,添加了一些问题,并编辑和负责本手册修订版的最终 NASA 印刷。
研究自学科成立之初就已开始。多年来,考古学家已经找到了描述和编目史前文物的精确方法,并学会了使用物质文化的变化来构建文化历史框架。因此,对技术领域变化的描述和解释对考古学至关重要。然而,近年来,对文物形式和组合变化的考虑似乎已经过时了。首先,文化历史研究变得不那么受欢迎,因此寻找新的、更精致的地平线标记通常被视为一种相当无用的活动。除此之外,过去 20 年考古学的主要理论发展都是在不直接涉及物质文化的领域。生存和定居模式问题以及生态事实遗迹的解释取得了长足进步,而对文物的宏观考虑却停滞不前。一些现代考古学家开始将“物质文化视为人类分类的产物”(Hodder 1982:7),并用讨论文物如何反映社会和象征结构来取代试图理解文物的功能意义。
认识到需要帮助项目经理更好地理解安全和保障技术,Gary G. Kelm、Frank J. Barber 和 Frank J. Barina 编写了附录 B。Kam L. Wong 使用 Charles Ryerson 和 Irwin Quart 提供的信息和概念编写了我们之前的工作簿 RP-1253 的第一章;感谢 North-Holland, Inc. 允许重印部分图表和文本。感谢 Fredrick D. Gregory、Michael A. Greenfield 博士、Peter Rutledge 博士、Vernon W. Wessel 和 Frank Robinson, Jr. 的鼓励和支持,让专业开发团队为我们的 NASA 安全培训课程 017 开发这本新工作簿。Henry A. Malec 已经去世,我们将怀念他。人们将永远记住他为推动可靠性协会所做的努力。他编写了本书原版的第 7、10 和 11 章。Martha Wetherholt 和 Tom Ziemianski 编写了第 8 章和第 9 章。感谢数字设备公司的数字出版社提供第 7 章中的软件评估材料。Vincent R. LaUi,现任美国宇航局格伦研究中心(俄亥俄州克利夫兰)风险管理顾问,编写了一些新章节和附录 C,添加了一些问题,并编辑和负责本手册修订版的最终 NASA 印刷。
在 APS 1+1 实施中,每条工作线路都存在一条冗余保护线路。受冗余保护的流量由工作线路和保护线路同时承载。终止 APS 1+1 的接收器必须从工作线路或保护线路中选择信元,并能够转发一个一致的流量流。工作线路和保护线路都传输相同的信息;因此,接收端可以从一个线路切换到另一个线路,而无需与传输端协调。如果工作(或活动)光纤电缆发生故障,则在 SONET 层选择保护光纤。完全符合标准,K1 和 K2 字节用于此信令。
图 1-1 RMA 流程图 ................................................ 错误!未定义书签。
由于过去十年来环保意识的增强和燃料价格的波动,几个国家开始合作制定国家计划,以实现《巴黎协定》的气候协议目标。目前,电气化进程中最关键的挑战之一是传统发动机的更换。由于燃料和电池单位体积的能量密度存在很大差距,因此电气化后飞机重量增加。飞机的整体稳定性和配置受到重量变化的影响,因此需要进一步分析。本文重点讨论并提出电池存储系统在飞机中的可维护性和位置方面的未来解决方案。在方法论方面,为了验证研究解决方案,本文以计划改装混合动力推进系统的传统飞机作为案例研究。结果表明,电池系统必须分为两个主要类别,即能量和结构存储系统,前者涉及电池类型的选择以及根据所需的能量输出确定电池尺寸/重量,而后者涉及电池存储系统的定位和结构设计。
摘要:可维护性是设计参数(可靠性、可用性、可维护性和安全性 (RAMS))之一,需要进行维护才能使相应设计可持续使用。同时,人以界面和交互的形式参与到所设计的工程产品/系统中。人体工程学是一门多学科科学,它从更广泛的意义上考虑了人的能力和局限性。本文的目的是将人体工程学融入可维护性设计过程中,以减少维护操作的时间和成本,简化操作并提高参与人员的幸福感。换句话说,良好的人体工程学可以带来良好的经济效益,从更广泛的意义上讲,还可以带来可持续性。这项调查表明,为维护操作员设计舒适的工作场所和减少工作量将有利于可维护性设计过程,并缩短维修平均修复时间。为了评估设计工作场所和工作量对维护人员的影响,应用了在科学研究中常用作人体工程学评估工具的 3D 静态强度预测程序 (3D SSPP)。关键词:可维护性、人体工程学、下背部压缩、3D 静态强度预测程序