摘要 驯化微藻有望为人类家庭和工业消费提供可持续的各种生物资源。由于微藻工程技术的限制,其潜力还远未得到充分挖掘。相关技术不如异养微生物、蓝藻和植物的技术那么发达。然而,最近对微藻代谢工程、基因组编辑和合成生物学的研究极大地帮助提高了转化效率,并为该领域带来了新的见解。因此,本文总结了微藻生物技术的最新发展,并探讨了通过代谢工程和合成生物学过程生产特色产品和商品产品的前景。在简要介绍了经验工程方法和载体设计之后,本文重点介绍了定量转化盒设计,详细阐述了目标编辑方法和新兴的藻类细胞代谢数字化设计,以实现高产量的有价值产品。这些进步使得微藻工程方式从单基因和基于酶的代谢工程转变为系统级精确工程,从带有转基因 (GM) 标签的细胞转变为不带转基因标签的细胞,并最终从概念验证转变为切实的工业应用。最后,提出了微藻工程的未来趋势,旨在为特定菌株的特色产品和商品产品在新发现的物种中建立个性化转化系统,同时在模型藻类物种中开发复杂的通用工具包。
无线驱动和远程控制的活跃软材料已引起了大量的研究注意,因为与传统的智能材料相比,它们在各种各样的领域中具有潜在的潜在应用,其性能有所改善。[1-5]这些合成伴侣对环境刺激的反应并表现出模仿或与自然界观察到的行为或现象相匹配的能力。[6-8]在这些智能材料中,机械刺激响应材料从环境输入中收获能量,例如光线,[9-11]热量,[12,13]溶剂,[14,15]和物理领域和[16-18],并将其转换为机械能量,无需通过机械形状,无需通过板上的功率来源。这些无线材料可以完成各种功能,例如运动[19-21]以及物体操纵和运输[22-24]作为执行器和传感器。在迄今为止报道的大量活跃智能材料中,由于它们的独特特征和独特的优点,液晶弹性体(LCE)和磁反应弹性体(MRE)最近与其他人脱颖而出。lces表现出大量的菌株(高达400%)和高度工作,以响应多种环境刺激,例如温度[25-27]光,[11,28]和电场。[17,18,29] LCES内部元素的预定对齐(由导演n描述)启用了已在软执行器和生物启发的设备中使用的复杂的3D可逆形状。这些局部菌株共同起作用,以实现指定的形状 - 修复行为,这通常是平面外弯曲的。[6,11,30]外部刺激会根据LCES的当地董事场诱导收缩和拉伸菌株的对齐中的订单参数。另一方面,MRE由柔软的弹性体(SE)矩阵组成,其嵌入式硬磁性微或纳米果(MMPS或MNP)组成。外部磁场在嵌入的MMP或MNP上产生局部力和扭矩。分离的扭矩会导致身体变形和MRE材料的净旋转,而颗粒所经历的力会融合到净力,从而置换MRE或变形。[31]磁性致动具有远距离,健壮和快速致动的优势,并且瞬间的能力
4 作为审核的一部分,我们可能会邀请申请人与项目主任会面,讨论最终选拔之前的任何关键问题/疑虑——此讨论可以以虚拟方式进行,或者我们可能会通过电子邮件就您的提案的某些方面寻求澄清。
这款可编程环境温控器旨在为您带来舒适和节能。它允许您在 4 个温度等级下编程和调节您的供暖系统: - 舒适:这是您在场期间所需的温度。 - 舒适 2:您在场期间所需的第二个温度等级。 - 环保:这是您短暂外出或夜间所需的温度。 - 防霜:这是您长时间外出期间的最低保证温度。它保护您的住所免受霜冻危害。它还允许您在 2 个温度等级下编程和调节您的空调: - 舒适:这是您在场期间所需的温度。 - 环保:这是您短暂外出或夜间所需的温度。
这意味着远程飞行员将需要新的自动化和决策支持系统才能操作飞机,因为他们不能依靠眼睛并从驾驶舱中查看。由于远程飞行员在地面上,因此他们需要一个可靠的通信链接,该链接允许远程飞行员与飞机交互并维护命令和控制。
一张焦点堆积的宏观照片,该照片具有多个螺旋形波导和其他测试结构的磷化磷化物光子芯片。芯片宽度仅为0.55厘米。由于磷化磷酸盐的高非线性,其高折射率及其可忽略不计的两光子吸收,使用此芯片可实现S,C和L光学通信带的极有效的光学参数扩增和频率转换。
摘要颜色路由器(CRS)的开发意识到了二分法成分的分裂,这有助于调节光子动量,该光子动量充当了频率和空间域上光学信息技术的信息载体。然而,具有光刺激的CRS由于光学衍射极限而缺乏在深度下波长尺度上的光子动量的主动控制。在这里,我们在实验上证明了通过电子诱导的CR在深度下波长尺度上进行二分光光子动量的主动操纵,在该CRS辐射模式中,通过将电子撞击位置转向单个纳米ante单位中的60 nm内,可以操纵CRS辐射模式。此外,设计和实现了基于CR数组的可编程调制的加密显示设备。这种方法具有增强的安全性,大信息能力和高级量表的高级集成,可以在量子设备和量子信息技术中的光子设备和新兴区域中找到应用。
对单分子水平的蛋白质的分析发现了在合奏平均技术中掩盖的异质行为。传统上,酶的数字定量涉及通过促荧光底物的转化将单个分子划分为微室的单分子的观察和计数。基于线性信号扩增的策略仅限于几种酶,其周转率足够高。在这里我们表明,通过将指数分子放大器的敏感性与DNA-酶电路的模块化和液滴读数结合,允许在单分子水平上特异性检测几乎任何D(R)NA与NA相关的酶促活性。该策略(表示为数字PUMA)已通过十几种不同的酶进行了验证,其中包括许多催化速率缓慢的酶,并降低到Pyogenes cas9的明显单周转极限。数字计数独特地产生绝对摩尔定量,并在所有经过测试的商业制剂中揭示了很大一部分非活性催化剂。通过实时监测单个酶分子的扩增反应,我们还提取了催化剂种群中活性的分布,从而揭示了各种应力下的替代失活途径。我们的方法极大地扩大了可以从单分子分辨率下的定量和功能分析中受益的酶的数量。我们预计数字puma将作为一种多功能框架,用于在诊断或生物技术应用中进行准确的酶定量。这些数字测定也可以用于研究蛋白质功能异质性的起源。
摘要:细胞隔室中不同生物逻辑过程的时空组织是朝着工程功能性人工细胞迈出的关键步骤。模仿人造细胞内部的受控双向分子通信仍然是一个明显的挑战。在这里,我们在合成微型室中提供了可编程膜的类似细胞器的DNA凝聚力之间可进行照片开关的分子传输。我们使用液滴微流体化学来通过液态液相分离在油中的液滴分离来制造膜的无融合DNA凝聚力,并利用内部DNA作为人工体细胞器,以通过光子调节的无效的生物细胞和生物局部转移生物核酸菌群来模仿细胞内通信。我们的结果突出了一个有前途的新途径,可以通过功能网络组装人造细胞。
摘要III-E型CRISPR-CAS效应子类的最新发现重塑了我们对CRISPR-CAS进化和分类的基本理解。III-E型效应子由几个类似CAS7的结构域和一个类似CAS11的域自然融合在一起的单个多肽组成,能够编程靶向和降解RNA。在这里,我们确定了由III-e型效应子组成的新颖组成,该效应子由Cas7样和类似Cas1的域组成,可以设计成具有活性的嵌合RNA靶向CAS效应器,并在RNA靶向中呈现Cas1的新功能。此外,我们通过有条不射的III-E型蛋白质之间的域来证明III-E型效应子的独特模块化,以设计紧凑的合成CAS效应子。我们完善了为哺乳动物细胞中可编程RNA靶向的几个紧凑效应子的方法。cas7-s代表了对III-E型结构和模块化的一种新理解,并为来自自然的蓝图提供了工程基因组工程技术的平台。