本文介绍了一项有关锂离子电池的电荷观察状态,用于嵌入式应用中的能量管理。对收费状态的了解对于这些电池的安全性和最佳用途至关重要。该研究的重点是在Spartan 6 FPGA上基于Kalman滤波器的观察者算法的开发和实施,即使可以从其实际状态开始初始化电池的电池,该算法可以准确估算电池的充电状态。在本文中,我们专注于FPGA进行快速计算的机会,该计算可以将FPGA用作BMS中的从属组件,并允许以低成本观察SOC大量的单元。在低成本FPGA上实施该观察者可能会导致各种应用中的电池管理系统(例如电动汽车和任何其他需要观察电池组充电状态)的电池管理系统的成本。通过模拟和实时测试验证了观察者模型。本研究提出了一种有希望的方法,可以准确估计锂离子电池的电荷状态,以用于各种应用中的E FFI能源管理。
“刚刚发表的《自然》新论文是长期不懈努力的结果,展示了立陶宛科学家在生命科学领域的潜力以及他们成为该领域领军人物的能力。这项研究揭示了 TnpB 基因剪刀的结构和机制,为进一步针对性地改造 TnpB 复合物以将其转化为治疗遗传疾病的治疗工具奠定了基础,”V. Šikšnys 教授说。
手稿于2022年12月16日收到;修订了2023年2月3日; 2023年2月7日接受。出版日期2023年2月20日;当前版本的日期2023年3月24日。这项工作得到了加拿大自然科学和工程研究委员会(NSERC)的部分支持;在加拿大第一研究卓越基金的一部分;在加拿大第一研究卓越基金的一部分是由Laboratoire纳米技术纳米纳斯特梅斯(LN2),该基金是法国 - 加拿大 - 加拿大联合国际研究实验室(IRL-3463),由中心由国家de la Recherche Scorentifique(CNRS),Universitedesitédesherbrooke,Unigabrooke,Comecomeitififique(CNR)中心资助和合作。 ÉcoleCentrale Lyon(ECL)和国家科学研究所(Institut National des Sciences)贴花(INSA)LYON;并部分由魁北克人的自然与技术(FRQNT)。本文的评论由编辑F. Bonani安排。(通讯作者:Pierre-Antoine Mouny。)Pierre-Antoine Mouny, Yann Beilliard, and Dominique Drouin are with the Institut Interdisciplinaire d'Innovation Technologique (3IT) and the Institut Quantique (IQ), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, Canada, and also with the Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463,3IT,Sherbrooke,QC J1K 0A5,加拿大(电子邮件:Pierre-antoine.mouny.mouny@usherbrooke.ca)。SébastienGraveine,Abdelouadoud El Mesoudy,RaphaëlDawant,Pierre Gliech和Serge Ecoffey与Interdistut Interdisci-Plinaire d'innovation D'innovation D'Innovation Technologique(3IT),Sherbrooke,Sherbrooke,Sherbrooke,Sherbrooke,Sherbrooke,QC J1K 0A 5,CANCALAINE,CANCALAITIE,以及CANCALATO,CANCARAITAN,以及CANCACATAINIIS Nanosystèmes(LN2),CNRS UMI-3463,3IT,Sherbrooke,QC J1K 0A5,加拿大。Marc-Antoine Roux与加拿大QC J1K 2R1的Sherbrooke大学量子研究所(IQ)一起。Fabien Alibart与加拿大Sherbrooke,Sherbrooke,Sherbrooke,Sherbrooke University Institute(3IT)的互助创新创新研究所,加拿大QC J1K 0A5,也与纳米技术实验室纳米系统(LN2)一起加拿大,还与法国59650 Villeneuve-d'ascq的电子,微电子学和纳米技术学院(IENN)一起。Michel Pior-Ladrière与纳米技术实验室纳米系统(LN2),CNRS UMI-3463,3IT,Sherbrooke,QC J1K 0A5,加拿大,以及与Sher-Brooke,Sherbrooke,Sherbrooke,Sherbrooke,QC j1 cancase cancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancance of sherbrooke,QC J1K 0A5本文中一个或多个数字的颜色版本可在https://doi.org/10.1109/ted.2023.3244133上找到。<数字OBJET标识符10.1109/TED.2023.3244133
随着单细胞转录组的可用性不断提高,RNA 特征为靶向活细胞提供了有希望的基础。分子 RNA 传感器将能够在不同情况下研究和治疗干预特定细胞类型/统计数据,特别是在人类患者和非模型生物中。在这里,我们描述了一种使用作用于 RNA 的腺苷脱氨酶 (RADAR) 进行活体 RNA 传感的模块化和可编程设计。我们验证并扩展了我们的基本设计,表征了其性能,并彻底分析了其与人类/小鼠转录组的兼容性。我们还确定了进一步提高输出水平和改善动态范围的策略。我们表明 RADAR 是可编程和模块化的,并且独特地支持紧凑的 AND 逻辑。除了定量之外,RADAR 还可以区分与疾病相关的点突变。最后,我们证明 RADAR 是一个独立的系统,具有在各种生物体中发挥作用的潜力。
人类基因组学面临的一个主要挑战是破译序列与功能之间的特定关系。然而,现有的用于在原生基因组背景下进行位点特异性超突变和进化的工具有限。在这里,我们提出了一种用于长距离、位点特异性超突变的新型可编程平台,称为解旋酶辅助连续编辑 (HACE)。HACE 利用 CRISPR-Cas9 来靶向进行性解旋酶-脱氨酶融合,该融合会在较大的 (>1000 bp) 基因组间隔内引起突变。我们应用 HACE 来识别 MEK1 中导致激酶抑制剂抗性的突变,剖析 SF3B1 依赖性错误剪接中各个变体的影响,并评估 CD69 刺激依赖性免疫增强剂中的非编码变体。HACE 提供了一种强大的工具,可用于研究编码和非编码变体、揭示组合序列与功能的关系以及发展新的生物功能。
IT和扩展数字现在对于我们的日常生活至关重要。无论是休闲还是公民职责,都通过计算机科学完成了很多活动。此外,活动领域非常大,我们用数字来告知自己,以交流和缴税。我们有权想知道,今天学校是否必须培训学生以及数字实践和用途?但是,尽管计算机科学在我们的社会中具有重要的位置,但观点有所不同。在公开辩论中,我们可以听到屏幕对幼儿很危险,但只有他们不当使用才是危险的。此外,政府的意见很难确定。我寻求选举诺言,在12名候选人的信仰职业中教授计算机科学的有利或不利条件。只有让·拉萨尔(Jean Lassalle)提到了这个主题:“创建一个新的学科来掌握数字工具,而不再使用专用的斗篷进行这些学科”。然后,人们可能会认为,其他候选人不认为学校的计算机科学教学是一个重要的问题。否则情况并非如此。共和国现任总统伊曼纽尔·马克龙(Emmanuelle Macron)认为,他想在2022年总统竞选期间在学校开发计算机教育现在的问题是如何?尽管如此,我们可以求助于专家的建议,这些专家们一致确认现在有必要在学校进行计算机科学的教学。
扭转二维范德华磁体可以形成和控制不同的自旋纹理,如 skyrmion 或磁畴。除了旋转角度之外,还可以通过增加形成扭转范德华异质结构的磁层数量来设计不同的自旋反转过程。在这里,A 型反铁磁体 CrSBr 的原始单层和双层被视为构建块。通过将这些单元旋转 90 度,可以制造对称(单层/单层和双层/双层)和不对称(单层/双层)异质结构。磁输运特性显示出磁滞的出现,这在很大程度上取决于施加磁场的大小和方向,不仅由扭转角度决定,还由形成堆栈的层数决定。这种高可调性允许在零场下切换易失性和非易失性磁存储器,并根据需要控制在负场或正场值下突然磁反转过程的出现。根据微磁模拟的支持,基于层中发生的不同自旋切换过程合理化了现象学。结果强调了扭转角和层数的组合是设计扭转磁体中自旋切换反转的关键要素,这对于自旋电子器件的小型化和实现新型自旋纹理很有意义。
注意:对于SAA转换器,在转换时间点之前和之后提供了队列特征(即分别使用CSF 𝛼 -SYN SAA-的最后一个时间点,分别与CSF 𝛼 -SYN SAA +的第一个时间点)。n(%),用于连续变量的中位数(IQR)。在支持信息中,表S1提供了临床和生物标志物数据的数据计数和百分比。缩写:β,淀粉样蛋白β; ADAS-COG11,阿尔茨海默氏病评估量表认知子量表11-项目; Ancova,协方差分析;方差分析,方差分析; apoe,载脂蛋白E; CDR-SB,临床痴呆评级盒子的总和; CSF,脑脊液;铜,认知没有受损; MCI,轻度认知障碍; MMSE,小型国会考试; PACC,临床前阿尔茨海默氏症的认知复合材料; p-tau181,磷酸化的tau181; SAA,种子扩增测定法。皮尔森的卡方测试。b单向方差分析。c Fisher精确测试。d Ancova针对年龄,性别,教育,诊断和APOE进行了调整。e Ancova针对年龄,性别,教育,APOE,诊断和CSFAβ42状态进行了调整。f逻辑回归针对年龄,性别,教育,诊断和APOE进行了调整。g配对t检验:所有连续变量; McNemar测试:所有二进制变量;配对标志测试:诊断。
TDK-Lambda UK Ltd Kingsley Avenue Ilfracombe Devon EX34 8ES UK +44 (0)1271 856600 tlu.powersolutions@tdk.com www.emea.lambda.tdk.com/uk
有机太阳能电池(OSC)的功率转化效率超过20%,这是形态优化起着重要作用的进步。普遍认为,加工溶剂(或溶剂混合物)可以帮助优化形态,从而影响OSC效率。在这里,我们开发了对一系列加工溶剂的强大耐受性的OSC,所有设备的高功率转换效率均约为19%。通过研究溶液状态,膜的形成动力学以及经过实验和计算的处理膜的特征,我们确定控制形态的关键因素,即受体材料的侧链与溶剂链的侧链以及供体和受体材料之间的相互作用之间的相互作用。我们的工作为形态控制的长期问题和有效指南提供了新的理解,以将OSC材料设计用于实用应用,在这种应用中,大规模加工需要绿色溶剂。