第1章硬件概述硬件功能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11个组件描述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11个基本单位。 。 。 。 。 。 。 。11个基本单位。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12个处理器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12个内存模块/实时时钟。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13条电缆。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13编程。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>14个通信选项。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>14紧密的I / O扩展模块。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15端盖。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15扩展电源和电缆。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15使用扩展模块的系统要求。。。。。。。。。。。。。。。。。。。。。。。15添加I/O银行。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16地址扩展I/O。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18扩展I / O功率故障。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>19 div>
第1章硬件功能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9个组件描述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 Micrologix 1200内存模块和/或实时时钟。。。。。。。。。。。。。。。。。。。。10 1762扩展I/O模块。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10条通信电缆。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11编程。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11个通信选项。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 div>
,如果我不突出我从东方加州理工学院的理论伪顾问Soonwon Choi突出显示。suonwon于2020年初开始与我们的团队合作,这个联盟一直非常富有成果,并且一直持续到今天。此外,我应归功于我与我分享了紧密合作伙伴关系的很快的学生。丹尼尔·马克(Daniel Mark)具有能够为我提出的任何问题提供答案,并能够从薄空气中发明理论证明和数值分析技术。他深厚的分析知识极大地提高了许多项目。Zhuo Chen是我对大约基准测试项目的不断伴侣,这是我博士学位最复杂的数量级。当我不断地欺骗他进行更多(和更大的)模拟时,他通过他的无与伦比的数字能力,他的奉献精神和耐心使他从字面上实现了整个工作。
使用人类 iPS 细胞和可编程核酸酶进行疾病建模和治疗原型设计 VU EMBL 基因编辑技术合作研究所的核酸酶细胞疗法实验室,Jonathan Arias(博士)首席研究员 人类 iPS 细胞和基因编辑技术的融合使我们能够访问罕见或通常无法访问的细胞类型和基因组配置,以进行疾病建模和体外治疗原型设计。在本次演讲中,我将介绍使用 CRISPR-Cas9 双等位基因编辑以确定性方式创建同源细胞模型的进展。我将讨论如何使用这种双等位基因编辑来模拟帕金森病和早发性罕见病蜡样脂褐素沉积症中的神经退行性。此外,我将展示基因编码的传感器如何实现患者分层,以及如何通过高通量和高含量系统进行化合物筛选。关于我们的实验室:我们的实验室位于立陶宛维尔纽斯。我们开发了造血细胞系(HSC 和 NK 细胞)、心室心肌细胞、神经元上皮干细胞 (NESC) 和骨骼肌中的人类细胞模型。如果您需要在人类 iPS 细胞中创建同源或报告系,请随时联系我们,我们很乐意与您合作 jonathan.arias@gmc.vu.lt https://www.gmc.vu.lt/en/group-of-cell-therapeutics/people https://www.linkedin.com/in/jonathan-arias-4116a122a/ https://orcid.org/0000-0002-3997-2355
合成维度对研究多种类型的拓扑,量子和多体物理学产生了极大的兴趣,它们为模拟有趣的物理系统(尤其是在高维度中)提供了灵活的平台。在本文中,我们描述了一种可编程的光子设备,能够在具有任意拓扑和尺寸的晶格中模仿一类Hamiltonians的动力学。我们得出了设备物理学和感兴趣的哈密顿量之间的对应关系,并模拟了该设备的物理学,以观察到各种物理现象,包括Hall Ladder中的手性状态,有效的量规电位,以及高度晶格中的振荡。我们提出的设备为在近期实验平台中研究拓扑和多体物理学开辟了新的可能性。
第1章硬件概述硬件功能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13个组件描述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 Micrologix 1400内存模块和内置的实时时钟。。。。。。。。。。。。。。。。。。14 1762扩展I/O模块。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15条通信电缆。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15编程。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>16固件修订历史记录。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>16个通信选项。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17
然而,与此同时,大规模的可配置性在功耗,电气和光学包装,驱动器电子和控制算法方面面临一些巨大的挑战。毕竟,具有重新配置功能的电路总是更大,更复杂的,而专门为单个目的而设计的电路。这将导致更长的光路和需要更多的电气控制信号,这反过来又需要在操作过程中更高的功耗。,我们将在不同的欧洲合作背景下在我们建立通用可编程光子芯片的道路上讨论我们在这些领域的最新进展。使用高效率的电磁调谐器,高密度包装解决方案以及电子和软件层扩展硅光子学,以控制这些光子电路的行为,可用于光子和微波模拟信号处理。,我们研究了新技术(例如MEMS)的引入,或新材料(例如用于硅上的高密度电磁相移位器)的新材料,取代了通常用于此目的的渴望强力的微型造影剂。我们还讨论放大器的引入如何显着增强可编程光子学的功能。
摘要:超表面最近在量子领域开辟了许多应用,包括量子断层扫描和量子纠缠态的产生。超表面能够利用纳米结构的各种几何自由度来存储大量信息,有望在处理量子信息方面发挥作用。本文,我们提出并通过实验证明了一种可编程超表面,它能够使用单光子经典光和量子光执行量子算法。我们的方法将多种可编程量子算法和操作(如 Grover 搜索算法和量子傅里叶变换)编码到超表面上的同一超透镜阵列上。空间光调制器选择性地激发不同的超透镜组来执行量子算法,而单光子相机捕获的干涉图案用于提取有关所选输出方向上的输出状态的信息。我们的可编程量子超表面方法作为一种经济有效的量子计算和信息处理组件小型化方法具有良好的潜力。
摘要:元整日最近开放了量子状态中的应用,包括量子tomog-raphy和量子纠缠状态的产生。通过利用纳米结构的各种几何自由度来存储大量信息的能力,预期元时间有助于处理量子信息。在这里,我们提出并在实验上证明了一个可编程的跨表面,能够使用带有单个光子的classical和量子光执行量子算法。我们的方法编码多种可编程量子算法和操作,例如Grover的搜索算法和Quantum傅立叶变换,上面是在元图上的同一金属阵列上。空间照明调制器选择性地激发了不同的金属集合以执行量子算法,而单光子摄像机捕获的干扰模式用于在所选输出方向上提取有关输出状态的信息。我们的潜在量子跨表面方法具有承诺的潜力,作为用于量子计算和信息处理的微型化合物的一种经济有效手段。
摘要:超表面最近在量子领域开辟了许多应用,包括量子断层扫描和量子纠缠态的产生。超表面能够利用纳米结构的各种几何自由度来存储大量信息,有望在处理量子信息方面发挥作用。本文,我们提出并通过实验证明了一种可编程超表面,它能够使用单光子经典光和量子光执行量子算法。我们的方法将多种可编程量子算法和操作(如 Grover 搜索算法和量子傅里叶变换)编码到超表面上的同一超透镜阵列上。空间光调制器选择性地激发不同的超透镜组来执行量子算法,而单光子相机捕获的干涉图案用于提取有关所选输出方向上的输出状态的信息。我们的可编程量子超表面方法作为一种经济有效的量子计算和信息处理组件小型化方法具有良好的潜力。