揭示驱动肿瘤耐药性的生物学过程对于支持创新治疗策略的开发是必要的。我们报告了由 Gustave Roussy 领导的 MATCH-R 前瞻性试验的设计和可行性,该试验的主要目的是表征癌症治疗耐药性的分子机制。主要临床终点包括分析耐药性肿瘤中分子改变的类型和频率,并将其与治疗前的样本进行比较。在最初的部分缓解或病情稳定至少 24 周后病情进展的患者在 CT 或超声引导下接受肿瘤活检。使用全外显子组测序、RNA 测序和面板测序对肿瘤进行分子分析。在可行性分析的数据截止时,在 333 个纳入病例中,有 303 例 (91%) 获得了肿瘤活检样本。从这些活检样本中,278 个 (83%) 的质量足以通过高通量下一代测序 (NGS) 进行分析。所有 278 个样本均进行了靶向 NGS 测序,215 个(70.9%)进行了 RNA 测序,222 个(73.2%)进行了全外显子组测序。总共有 163 个肿瘤被植入 NOD scid gamma (NSG) 或裸鼠体内,并建立了 54 个患者来源的异种移植 (PDX) 模型,成功率为 33%。24 名患者(7.6%)发生了因侵入性肿瘤取样而导致的不良事件。研究招募仍在进行中。系统性肿瘤分子分析和患者来源的获得性靶向药物和免疫疗法耐药模型的开发是可行的,并且可以推动下一步治疗策略的选择。
1 迪肯大学运动与营养科学学院、体育活动与营养研究所,澳大利亚伯伍德 2 昆士兰大学医学院、皇家布里斯班妇女医院,澳大利亚布里斯班 3 昆士兰大学医学院,澳大利亚布里斯班 4 迪肯大学健康学院护理与助产学院,澳大利亚吉朗 5 莫纳什健康学院质量与患者安全研究中心 – 莫纳什健康伙伴关系,莫纳什健康,澳大利亚墨尔本 6 拉筹伯大学贝克心血管研究、翻译与实施系,澳大利亚墨尔本 7 贝克心脏与糖尿病研究所,澳大利亚墨尔本 8 迪肯大学应用人工智能研究所,澳大利亚伯伍德 9 墨尔本大学计算机与信息系统学院,澳大利亚墨尔本 10 代尔夫特理工大学工业设计工程学院,荷兰代尔夫特 11 格里菲斯大学医学与牙科学院应用健康经济学中心,澳大利亚黄金海岸 12 李光前医学院,南洋理工大学,新加坡,新加坡 13 墨尔本大学全科医学和初级保健系,墨尔本,澳大利亚 14 墨尔本大学医学、牙科和健康科学学院墨尔本人口与全球健康学院,墨尔本,澳大利亚 15 哥本哈根大学计算机科学系,哥本哈根,丹麦 16 弗林德斯大学弗林德斯数字健康研究中心,阿德莱德,澳大利亚
图24。In this image, a view of the shed used on farm for the preparation of the meal for the pigs ...............................................................................................................................................49 Figure 25.可以欣赏猪餐的饲料成分的景色。Rice is the main element, followed by oil palm kernel cake, and kitchen offcuts and food scraps ................................50
1 Institut Guttmann,Institut Universitari deNeuroorehabilitació,与UAB,巴塞罗那,巴塞罗那,西班牙,2 Universitationatat automnoma de Barcelona,Bellaterra,Barcelath,Spain,3 Fundacio法国蒙彼利埃,5神经外科,医院的科学院,西班牙特内维尔,6基础医学科学系,西班牙特内里费纳大学,西班牙7,医学院医学院,医学院,分别是诺斯特纳学院,巴塞罗那贝拉特拉大学,巴塞罗那,西班牙,贝尔特拉大学,de recercabioMédica学院,八月pi i sunyer(idibaps),巴塞罗那,西班牙,西班牙10中心,deDiaginòsticper deDiaginòsticper la imatgeclínic,医院
这项研究评估了沿Cipali,Semarang-Solo和Surabaya-Mojokerto Highways的电动汽车(EV)充电站的光伏(PV)和风力涡轮机的计划和开发。随着能源需求的增长和可持续性的越来越多,纳入可再生能源对于减少对化石燃料的依赖至关重要。通过使用Homer Pro软件,该研究分析了这种混合方法的运营绩效和经济实用性,强调了关键指标,例如内部收益率(IRR),投资回报率(ROI)和投资回收期。调查结果表明,PV-WIND混合系统减少了能源费用,并提高了电动汽车充电基础设施的效率和可持续性。值得注意的是,萨拉巴亚-Mojokerto网站展示了最有利的结果,其IRR的特征超过25%,而且回报期为四年。这些结果强调了有效管理,战略规划和可再生能源系统可持续发展的关键作用,以加强印度尼西亚具有环境意识的运输基础设施。
本演示文稿为 GoviEx Uranium Inc.(以下简称“公司”或“GoviEx”)专有,未经公司事先同意,不得全部或部分复制、传播或引用。公司不承担核实这些材料中信息的责任,也不对此类信息的准确性或完整性作出任何陈述或保证。公司不承担更正或更新这些材料的义务。这些材料不包含评估任何交易或事项所需的所有信息,也不构成对任何交易或事项的建议。任何接收这些材料的人士均应对本文提及的事项进行独立分析。本演示文稿可能包含适用证券法所定义的前瞻性信息。本演示文稿中包含的除当前或历史事实陈述以外的所有信息和陈述均为前瞻性信息。此类声明和信息可能使用诸如“关于”、“大约”、“可能”、“相信”、“预期”、“将”、“打算”、“应该”、“计划”、“预测”、“潜在”、“项目”、“预期”、“估计”、“持续”或类似词语或其否定词或其他类似术语来识别。前瞻性陈述受此处以及公司向加拿大证券监管机构定期提交的其他文件中披露的具体因素的各种风险和不确定性的影响。本演示文稿中提供的信息必然是总结性的,可能不包含所有可用的重要信息。前瞻性陈述包括但不限于关于公司在赞比亚的矿山许可项目的预期开发时间和方法以及潜在生产进展以及在赞比亚进一步勘探进展的陈述;开始采矿后 4 个月内生产铀矿的潜力;预计的采矿方法、加工率、开采的总矿石量、开采的总吨数、剥离率、采矿顺序和矿产储量;可行性研究中未包括的 Muntanga 项目的未来潜力;Muntanga 项目将创造的预期就业岗位数量;Muntanga 项目预计的低运营支出;公司对 ESG 的持续承诺;未来任命债务顾问;继续与承购商合作;更新 ESIA 以完全符合 IFC 绩效标准,以及完成 RAP。前瞻性陈述基于一系列假设和估计,尽管管理层根据公司经营的业务和市场认为这些假设和估计是合理的,但本质上受重大运营、经济和竞争的不确定性和偶然性。前瞻性陈述基于以下假设:铀库存持续消耗,导致需求增加和铀价上涨,铀市场长期基本面保持强劲;公司对 ESG 的承诺,与公司项目所在司法管辖区的当地人接触的做法,从而降低相关项目的风险;公司项目所在司法管辖区的地方政府继续支持采矿业,特别是公司项目;公司优化项目以吸引新投资者的能力;公司获得必要融资的能力;以及一般而言,铀价格将保持足够高,推进公司项目的成本足够低,以使其能够以有利可图的方式实施其业务计划。可能导致实际事件和结果与公司预期存在重大差异的重要因素包括与铀价格市场波动相关的因素;公司无法获得额外融资、开发其矿产项目或获得其在公司经营所在司法管辖区开展活动所需的任何必要许可、同意或授权;公司合作伙伴拒绝支持其持续运营;以及公司无法成功或盈利地从其项目中生产矿产。此外,应结合本演示文稿中的信息,查看截至 2023 年 12 月 31 日的年度管理层讨论与分析报告以及截至 2023 年 12 月 31 日的年度信息表中“风险因素”部分中描述或提及的因素,这些内容可在 SEDAR+ 网站 www.sedarplus.ca 上查阅。尽管公司已尝试找出可能导致实际结果、业绩或成就与前瞻性陈述中所述内容存在重大差异的重要因素,但可能还有其他因素导致结果、业绩或成就不如预期、估计或预期。无法保证此类信息将被证明是准确的,也无法保证管理层对未来发展、情况或结果的期望或估计将会实现。由于这些风险和不确定性,这些前瞻性陈述中预测的结果或事件可能与实际结果或事件存在重大差异。因此,读者不应过分依赖前瞻性陈述。本演示文稿中的前瞻性陈述截至本演示文稿发布之日,并且公司否认有任何更新或修改此类信息的意图或义务,除非适用法律要求。本演示文稿中包含的与 Muntanga 项目有关的某些科学和技术信息来源于或摘录自公司 2025 年 1 月 23 日的新闻稿,该新闻稿披露了根据国家文书 43-101 - 矿产项目披露标准(“NI 43-101”)编制的可行性研究结果。可行性研究的技术报告由 Ukwazi Transaction Advisory (Pty) Ltd、SRK Consulting (UK) Limited 和 SGS Bateman (Pty) Ltd. 编制,以符合 NI 43-101,并将由 GoviEx 在 2025 年 1 月 XX 日新闻稿发布之日起 45 天内根据 SEDAR+(www.sedarplus.ca)上的个人资料提交。新闻稿中提及的所有科学和技术信息均已由 Jacobus Johannes Lotheringen 审查和批准。Lotheringen 先生拥有工学学士(采矿工程学位),是南非矿业冶金学会(SAIMM)会员(注册号 701237),是南非工程理事会(ECSA)注册的专业工程师(注册号 20030022),受雇于 Ukwazi Transaction Advisory (Pty) Ltd,担任首席采矿工程师,并且是根据 NI 43-101 铀矿床条款确定的独立合格人员。Lotheringen 先生已核实新闻稿中披露的数据。美国投资者注意:本演示文稿中的披露内容使用符合加拿大报告标准的矿产资源和矿产储量分类术语,除非另有说明,本演示文稿中包含的所有矿产资源和矿产储量估算均根据 NI 43-101 和其中引用的 CIM 标准编制。 NI 43-101 是由加拿大证券管理局制定的一项规则,旨在为发行人就矿产项目进行的所有科学和技术信息公开披露制定标准。SEC 现代化规则于 2019 年 2 月 25 日生效,取代了美国 1933 年证券法(经修订)行业指南 7 中包含的矿业注册人的历史披露要求。由于采用了 SEC 现代化规则,SEC 现在承认“已测量矿产资源”、“指示矿产资源”和“推断矿产资源”的估计值。此外,根据 NI 43-101 的要求,SEC 已修改其对“已探明矿产储量”和“可能矿产储量”的定义,使其与 CIM 标准下的相应定义“基本相似”。美国投资者请注意,虽然上述术语与相应的 CIM 标准“基本相似”,但 SEC 现代化规则和 CIM 标准下的定义存在差异。 因此,不能保证公司根据 NI 43-101 报告的“已证实矿产储量”、“可能矿产储量”、“已测量矿产资源”、“指示矿产资源”和“推断矿产资源”的任何矿产储量或矿产资源与公司根据证券交易委员会现代化规则所采用的标准编制的储量或资源估算相同。美国投资者还应注意,虽然证券交易委员会现在承认“指示矿产资源”和“推断矿产资源”,但投资者不应假设这些类别中的任何部分或全部矿化将转化为更高类别的矿产资源或矿产储量。使用这些术语描述的矿化在其存在性和可行性方面比已被定性为储量的矿化具有更大的不确定性。因此,投资者应注意不要假设公司报告的任何“指示矿产资源”或“推断矿产资源”在经济上或法律上是可开采的或将是可开采的。此外,“推断矿产资源”的存在以及是否可以合法或经济地开采存在更大的不确定性。因此,美国投资者也应注意不要假设“推断矿产资源”的全部或部分都存在。根据加拿大证券法,“推断矿产资源”的估计数不能构成可行性或其他经济研究的基础,除非在 NI 43-101 允许的有限情况下。因此,本演示文稿和本文引用的包含公司矿床描述的文件中包含的信息可能无法与美国公司根据美国联邦证券法及其规则和条例的报告和披露要求公开的类似信息进行比较。投资者应注意不要假设公司报告的任何“指示矿产资源”或“推断矿产资源”在经济上或法律上是可开采的或将可开采的。此外,“推断矿产资源”的存在以及是否可以合法或经济地开采存在更大的不确定性。因此,美国投资者也应注意不要假设“推断矿产资源”的全部或部分都存在。根据加拿大证券法,“推断矿产资源”的估计不能构成可行性或其他经济研究的基础,除非在 NI 43-101 允许的有限情况下。因此,本演示文稿和本文引用的包含公司矿床描述的文件中包含的信息可能无法与美国公司根据美国联邦证券法及其规则和法规的报告和披露要求公开的类似信息进行比较。投资者应注意不要假设公司报告的任何“指示矿产资源”或“推断矿产资源”在经济上或法律上是可开采的或将可开采的。此外,“推断矿产资源”的存在以及是否可以合法或经济地开采存在更大的不确定性。因此,美国投资者也应注意不要假设“推断矿产资源”的全部或部分都存在。根据加拿大证券法,“推断矿产资源”的估计不能构成可行性或其他经济研究的基础,除非在 NI 43-101 允许的有限情况下。因此,本演示文稿和本文引用的包含公司矿床描述的文件中包含的信息可能无法与美国公司根据美国联邦证券法及其规则和法规的报告和披露要求公开的类似信息进行比较。
我没有可能在我自己完成论文的这一刻到达。我非常感谢我的汤姆·萨福德(Tom Safford),希瑟·达比(Heather Darby),米歇尔·米勒(Michelle Miller),马修·霍夫曼(Matthew Hoffman)的支持委员会,最重要的是,我的委员会主席兼顾问analena bruce。感谢您对该项目的每项贡献,以重要的方式塑造它,并指导我成为一名周到的研究人员。Analena,感谢您的不懈支持,鼓励我遵循好奇心,并在每一步的每一步都提供指导。我对与您合作的经历感到非常感激,我仍然可以记得我觉得自己在您的实验室中获得职位的那一天的怀疑。感谢我令人愉快的实验室同伴辛迪·郑和奥利维亚·伯顿(Cindy Zheng)和奥利维亚·伯顿(Olivia Burton)以及实验室博士后汉娜·斯托克斯·拉莫斯(Hannah Stokes-Ramos)创造了一个快乐而支持的学习和工作场所。您对该项目的各种迭代和阶段的反馈对于建立我的信心非常宝贵。我感谢我的ANFS朋友为我加油并为有时忘记我们的工作提供好的公司。我亲爱的家人和甜蜜的伴侣扎克(Zach)花了几个月的时间倾听我的想法,看着我被这个项目所吸收。感谢您的日常鼓励和相信我。我很幸运。
量子密钥分布(QKD)[1-4]旨在使物理定律保证的安全性进行确定的通信,即使在存在具有出色计算能力的窃听器的情况下。其最常见的实现利用了用C频段光携带信息[5]或光学相[6]的C型带光携带信息的纤维光通道。即使在被动传输中,当事方之间的易于建立和维持稳定的参考[9],因此前者的自由度是有利的[7,8]。后者可以通过“ twin-field”(TF)QKD [10]实现有益的率距离缩放,并导致了近年来创纪录的距离的一系列QKD示范[11-14],克服了点对点损失通道的秘密关键能力[15]。QKD也可以通过在远处用户之间的纠缠分布来实现,并由本地测量[16,17]。除了QKD外,纠缠是其他量子信息协议的基本资源,例如量子传送[18-20]。迄今为止,在全球部署的基础设施中进行了几项QKD领域试验[21 - 28],尽管只有有限的数字表明长距离国际量子通信[29]。在这些中,仅报告了一个基于海底的通信链接[30-32],因此海底光纤维仍然代表了很大程度上未开发的情况。到目前为止,意大利和马耳他之间的海底纤维中最长的地理距离约为96 km [30,32]或192 km,在循环背包配置中[31]。在这项工作中,我们执行了一系列实验,以评估224公里海底纤维链路对量子通信协议的适用性。该链接以“岩石”为特征的链接已由公司的电缆着陆之间的Eunetworks [33]部署
摘要:格陵兰岛丰富的可再生能源资源使其成为绿色氢气的潜在生产国,而绿色氢气是全球脱碳努力的有前途的能源载体。本研究旨在评估格陵兰岛氢气运输的经济可行性,重点关注通过管道运输的压缩气体和通过海上运输的液化氢。该研究采用了一种综合方法,包括对生产、液化和运输成本的经济分析。这种方法整合了文献中可用的多种方法,并考虑了氢气供应链的各个组成部分,超越了通常只关注运输策略的模式。结果表明,对于较短距离(<1,500 公里)和较高需求,管道更具成本效益,而航运更适合较长距离和较大容量。从帕米特到努克运输氢气的案例研究显示,对于 40 吨/天的生产能力,管道运输成本为 1.3 美元/千克,而航运成本为 2.7 美元/千克。这些发现对氢经济的发展做出了重大贡献,凸显了格陵兰在全球绿色氢市场中具有竞争力的潜力。该研究为决策者规划高效、经济的氢运输战略提供了宝贵的见解。