为了克服这一挑战,研究人员使用了Terahertz Light脉冲,这种光脉冲频率远低于可见光。这些脉冲会导致电子在分子和可以操纵单个分子的专用显微镜的金属尖端之间移动,从而使团队可以去除或添加电子。这种新方法提供了一种不仅以可控方式控制激子的方法,既快速又精确,而且还可以控制其他重要的分子状态,这些状态对于化学反应,能量传递和许多其他过程至关重要。该团队还证明了人眼看不见的Terahertz Light可以在分子中转化为可见光,从而揭示了一种新颖的方式,可以通过分子能量变化将一种类型的光转化为另一种光。
2。根据氢的BOHR模型,当电子从激发状态向下转移到状态时,会发出可见光。下图中的虚线表示氢光谱中从n = 3到n = 2的过渡。
2。根据氢的BOHR模型,当电子从激发状态向下转移到状态时,会发出可见光。下图中的虚线表示氢光谱中从n = 3到n = 2的过渡。
1) 紫外线区域 l < 0.4 mm ~5% 辐照度。 2) 可见光区域 0.4 mm < l < 0.7 mm ~43% 辐照度。 3) 红外区域 l > 0.7 mm ~52% 辐照度。
目的 – 每 15 分钟在 12 个光谱带(2 个可见光、1 个高分辨率可见光、7 个红外、2 个水蒸气)上拍摄一张地球及其大气层的图像 – 将图像数据和其他气象信息传播给数据用户站 技术特点 – 自旋稳定航天器 – 质量(发射时)约 2 吨 – 直径 3.2 米 – 高度 3.7 米 – 寿命 7 年 – 轨道地球静止 – 轨道位置在赤道平面和 0˚ 经度以上 – 运载火箭与阿丽亚娜-4 和阿丽亚娜-5 兼容 – 发射日期 2000 年 10 月(MSG-1) – 有效载荷 • 旋转增强可见红外成像仪 (SEVIRI) • 地球静止地球辐射预算 (GERB) 仪器 • 搜索和救援 (S & R) 应答器 • 任务通信包 (MCP)
功能;它自然发生在许多小的有机分子中。可以在补品水中找到一个经典的例子。滋补水含有分子奎宁,当暴露于紫外线时,它会发光明亮的青色(蓝色绿色)。分子不会自行发光,并非每个分子都会产生光泽。首先,要产生光,分子必须吸收 - 摄入 - 能源。通常,荧光染料吸收电磁频谱上较高能量的光,例如无形的紫外线。随着原子摇动或振动,激发电源吸收的某些能量会损失,然后当电子返回基态时,发出了较低能量的光,例如可见光,会散发出来。化学家会说,当他们吸收紫外线时,分子从基态上“兴奋”,然后“放松”并落回基态发光或产生可见光。具有正确的结构对于光的发射至关重要。分子激发后,它们可以通过