提交给跨学科研究项目:应用信息管理以及俄勒冈大学研究生院,部分满足理学硕士学位要求 CAPSTONE REPORT 俄勒冈大学应用信息管理项目 722 SW Second Avenue Suite 230 Portland, OR 97204 (800) 824-2714
网络安全性和基础设施安全局(CISA),国家安全局(NSA),联邦调查局(FBI)(FBI),澳大利亚信号局(ASD)澳大利亚网络安全中心(ACSC),加拿大网络安全中心,加拿大网络安全中心(CCCS)和新西兰国家 /地区的国家网络安全中心(PRC PRODSSSC) - NC SESC-NC PESICS-NC PESICS-NC PESICENS WARIL ZIL PESICENS(NCIL PESICENS)妥协了全球主要电信提供商网络,以进行广泛而重要的网络间谍活动。授权机构正在发布本指南,以强调这一威胁,并为网络工程师和通信基础设施的捍卫者提供最佳实践,以增强其可见性,并使他们的网络设备不受PRC隶属关系和其他恶意网络参与者进行的成功剥削。尽管针对网络辩护者和通信基础设施的工程师量身定制,但本指南也可能适用于具有本地企业设备的组织。创作机构鼓励电信和其他关键基础设施组织在本指南中运用最佳实践。
提交给跨学科研究项目:应用信息管理以及俄勒冈大学研究生院,部分满足理学硕士学位要求 CAPSTONE REPORT 俄勒冈大学应用信息管理项目 722 SW Second Avenue Suite 230 Portland, OR 97204 (800) 824-2714
固态光源比常规源更容易容易出现更大的时间光调制(TLM)。tlm的可见性取决于波形,频率,调制深度和占空比,并且受观察者的敏感性的影响。tlm可以远远超过临界闪烁融合频率(CFF)。这个人类受试者实验探索了在74 TLM波形下的靶向任务的频道阵列效应与幻影阵列效应的可见性。结果显示,频镜的可见性峰在90至120 Hz之间,而幻影阵列可见性峰在500至1,000 Hz之间。在6,000 Hz的敏感参与者中可以看到幻影阵列。在矩形和正弦TLM,较高的调制以及占空比的周期为10%或30%和50%时,这两种效应更为可见。使用Leiden视觉灵敏度量表进行区分的高灵敏参与者将TLM波形评为更明显,尤其是那些本质上难以看见的tlm波形。这项工作奠定了幻影阵列效应指标的基础,并指导驱动器和调光设计师迈向电子电路,以最大程度地减少LED产品中TLM的可见性。
零信任(ZT)是“不断发展的网络安全范式,可将防御能力从基于静态的,基于网络的周围转移到专注于用户,资产和资源上。” [1]与传统的基于外围的网络安全模型不同,ZT方法主要集中在数据和服务保护上,通过执行企业资产和受试者之间的动态信任政策(最终用户,应用程序,应用程序和其他要求从资源请求信息的非人类实体)。为促进ZT框架和安全模型的开发,部署和运营,国防部(DOD)指导将ZT的能力组织成七个支柱,共同努力提供全面有效的安全模型。这些支柱是用户,设备,网络和环境,数据,应用和工作负载,可见性和分析以及自动化和编排。自动化和编排是其他支柱的自动实现和集成,以动态,快速和可扩展的效果。
摘要 - 汽车行业已将基于传感器技术的自动车辆和主动安全功能确定为提高安全性,可持续性,加速性和效率的催化剂。随着技术的进步,这些系统的应用正在不断扩展。除了这些进步之外,必须开发方法来评估和测试以相关且可重复的方式评估和测试ADAS系统性能以及可靠性。这项工作概述了开发和评估生成道路喷雾的测试方法的主要挑战,这是细水颗粒的湍流混合物,可降低由潮湿表面上驾驶的车辆引起的可见性。设计和生产了硬件原型和附属评估过程,以实现测试方法。评估过程包括一种自动软件工具,以量化原型降低可见性的能力以及一种自动化传感器校准的方法,以在不同位置和时间收集数据。关键发现之一是消除测试环境中外部干扰的挑战。光和风条件等因素通过喷雾显着影响可见性。工作得出的结论是,控制这些因素对于实现测试可重复性至关重要。我们在受控环境中成功重新创建了道路喷雾剂,以多达80%的步骤削弱了传感器的感知能力,反复在±5-15%以内。索引术语 - 种植,水微粒,ADA,AD,自动化,可见性降解,传感器,对比度,感知,不利天气
同时:愤怒的用户2 - 在这种情况下,我的第二个女儿报告“我的互联网不起作用;这是一场灾难!!!我再也无法流式传输视频”
减轻与气候变化相关的极端38事件的强化[1-3]的关键组成部分是替代具有可持续的,低碳,39可再生能源的常规化石燃料。尽管由于强烈降低了40个on-o shore风的成本[4-6]以及太阳能[7,8],但它们的经济竞争力[7,8],但目前的增长41可再生能源的动态并不能使1.5°C C兼容的风景1.5°C兼容的风景42 [9]。在欧洲,尤其是德国,经过数年创纪录的能力扩大,由于对44种这些技术,尤其是风力发电的社会反对,最近有43个增长率急剧下降[5,10,11]。45造成岸风的构造越来越多地与当地的股份-46个持有人[12,13]相反,涡轮机对景观的视觉影响是47个主要问题[14-21]。尤其是,涡轮机的安装在景观48中被拒绝,其审美质量高,而它们在不太美丽的景观中更加接受49 [22-27]。太阳能通常对景观的影响较小[28],而导致50个公众反对[29,30],但视觉影响尤其是大规模光伏51(PV)系统的视觉影响[31],在特定地区,在特定地区,对立的对立比对风的强烈52 [32]。以及其他外部性,例如噪音,对野生动植物53的威胁以及房地产价格下跌,可再生技术的视觉影响似乎对与工厂距离增加的当地居民减少了54 [26,33 - 35]。55减轻和评估可再生能源项目中的视觉景观影响56的主要计划方法是可见性分析[36,37]。可见性分析可以通过多种方式进行57,包括从观察肛门58 YSIS,3D模拟和光峰[38,39]产生的可见性图。但是,当规划项目59在大空间尺度上(即区域或国家)时,上述方法不能很好地使用60。在观看计算的情况下,其原因是61分析是基于视线测试[40],该测试是从62个检查项目的角度进行的。因此,所有检查项目的确切位置必须首先确定63,这是不可能的,而这些项目64的位置仍在调查中。因此,到目前为止,将可见性分析用于规划65限于小型空间量表[41 - 45]或影响评估[46,47]。然而,可以通过逆转其67个设置,即,从景观区域的角度进行分析来克服66个常规视图分析的缺点,而不是从检查项目的角度来保护68个区域。这69个相反的视图评估可以扩展到可再生70能源部署的大规模计划[48],并将在本研究中使用。71鉴于以前的可见性分析局限
神经辐射场(NERFS)是场景,物体和人类的有希望的3D代表。但是,大多数措施方法都需要多视图输入和每场培训,这限制了其现实生活中的应用。此外,熟练的方法集中在单个受试者的情况下,留下涉及严重障碍和挑战性视图变化的互动手的场景。为了解决这些问题,本文提出了一个可见的可见性 - 可见性的NERF(VA-NERF)框架,用于互动。具体来说,给定相互作用的手作为输入的图像,我们的VA-NERF首先获得了基于网格的手表示,并提取了相应的几何和质地。随后,引入了一个功能融合模块,该模块利用了查询点和网格顶点的可见性,以适应双手的特征,从而可以在看不见的区域的功能中进行重新处理。此外,我们的VA-NERF与广告学习范式中的新型歧视者一起进行了优化。与传统的分离器相反,该官员预测合成图像的单个真实/假标签,提议的判别器生成了一个像素的可见性图,为看不见的区域提供了精细的监督,并鼓励VA-NERF提高合成图像的视觉质量。互惠2.6m数据集的实验表明,我们所提出的vanerf的表现明显优于常规的nerfs。项目页面:https://github.com/xuanhuang0/vanerf。