神经辐射场(NERFS)是场景,物体和人类的有希望的3D代表。但是,大多数措施方法都需要多视图输入和每场培训,这限制了其现实生活中的应用。此外,熟练的方法集中在单个受试者的情况下,留下涉及严重障碍和挑战性视图变化的互动手的场景。为了解决这些问题,本文提出了一个可见的可见性 - 可见性的NERF(VA-NERF)框架,用于互动。具体来说,给定相互作用的手作为输入的图像,我们的VA-NERF首先获得了基于网格的手表示,并提取了相应的几何和质地。随后,引入了一个功能融合模块,该模块利用了查询点和网格顶点的可见性,以适应双手的特征,从而可以在看不见的区域的功能中进行重新处理。此外,我们的VA-NERF与广告学习范式中的新型歧视者一起进行了优化。与传统的分离器相反,该官员预测合成图像的单个真实/假标签,提议的判别器生成了一个像素的可见性图,为看不见的区域提供了精细的监督,并鼓励VA-NERF提高合成图像的视觉质量。互惠2.6m数据集的实验表明,我们所提出的vanerf的表现明显优于常规的nerfs。项目页面:https://github.com/xuanhuang0/vanerf。
昆虫显示出各种各样的眼睛和身体颜色。编码涉及生物合成和颜料沉积的基因是理想的遗传标记物,例如促进果蝇遗传学的力量。oncopeltus fasciatus是一个新兴昆虫的新兴模型,昆虫是刺穿的喂食顺序的成员,其中包括害虫和疾病媒介。为了鉴定O. fasciatus的候选可见标记,我们使用了父母和若虫RNAi来识别改变眼睛或身体颜色的基因,而在没有有害的生存力上没有有害的e ects。我们选择了Vermilion进行CRISPR/CAS9基因组编辑,产生了三个独立的功能突变线。这些研究映射到X染色体,将基因的第一个分配给该物种的染色体。纯种合物具有鲜红色,而不是黑色的眼睛,并且完全可行且肥沃。我们使用这些突变体来验证果蝇玫瑰色的直系同源物的作用,在使用RNAi促进红色色素沉着中。而不是野生型红色的身体,而缺乏朱红色和XDH1的虫子具有明亮的黄色身体,这表明豆粒和翼龙有助于O. fasciatus的身体颜色。我们的研究生成了O. fasciatus的第一个基因可见标记,并扩展了该模型系统的遗传工具包。
参考文献1。B Jeevana,R Venkata,2021。紫外分光光度法的开发用于估计新的抗病毒重新利用药物favipiravir。亚洲药物和临床研究杂志。第67-69页,doi:10.22159/ajpcr.2021.v14i7。41966。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 12 月 20 日发布。;https://doi.org/10.1101/2022.12.20.521233 doi:bioRxiv preprint
仅用于研究使用。不适用于诊断程序。有关当前认证,请访问thermofisher.com/certifications©2022 Thermo Fisher Scientific Inc.保留所有权利。Teflon是Chemours Company FC,LLC的注册商标。除非另有说明,否则所有其他商标都是Thermo Fisher Scientific及其子公司的财产。AN56369_EN 12/22
摘要 - Deep-ultraviolet(DUV)光电检测对其在许多军事和民用领域的重要应用中获得了广泛的研究兴趣。在这项工作中,我们介绍了大区域二维(2D)PDTE 2多层的合成,可以将其直接转移到GAN基板上,以构建垂直异质质质,以进行可见的盲型DUV PhotoDeTection。在265 nm的光照射下,异质结构显示出独特的pho-tovoltaic行为,使其能够充当自动驱动光电探测器。重要的光响应参数,例如I光/I暗比,响应性,特定的DUV/可见度(265 nm/450 nm)的拒绝率分别高达10 6,168.5 mA/w,5.3×10 12 JONES和10 JONES和10 4。通过应用-1.0 V的小反向偏置,可以进一步增强254.6 mA/W。此外,光电探测器可以用作DUV光图像传感器,以可靠地记录具有不错的分辨率的“ H”模式。本研究铺平了一种将高性能成本效益的DUV光电探测器设计到实用的光电应用的方法。
