摘要人工智能(AI)和机器学习(ML)正在彻底改变各个领域的人类活动,而医学和传染病并不能免除其快速和指数的增长。此外,可解释的AI和ML的领域已经获得了特别的相关性,并引起了人们的兴趣越来越大。传染病已经开始从可解释的AI/ML模型中受益。例如,在抗菌病毒预测和量子疫苗算法中,它们已被采用或提议更好地理解旨在改善2019年冠状病毒疾病诊断和管理的复杂模型。尽管有关解释性和可解释性之间二分法的某些问题仍然需要仔细关注,但对复杂的AI/ML模型如何得出其预测或建议的深入了解对于正确地面对本世纪传染病的日益严重的挑战变得越来越重要。
未经我书面明确许可,不得在线或与课外任何人共享本课程中使用的任何材料,包括但不限于讲义、视频、评估(测验、考试、论文、项目、家庭作业)、课堂材料、复习表和其他问题集。未经授权共享材料可能会助长作弊行为。大学了解用于共享材料的网站,任何与您相关的在线材料或任何疑似未经授权共享材料的行为都将报告给学生主任办公室的学生行为和学术诚信部门。这些报告可能导致启动学生行为流程,并包括对学术不端行为的指控,可能导致制裁,包括影响成绩。
●……严格禁止。这包括使用AI来生成想法,概述方法,回答问题,解决问题或创建原始语言。本课程中的所有工作都必须是您自己的或在允许的小组工作中创建的。●…应在有限的基础上允许。您将被告知可以使用AI的作业。您也欢迎您在任何作业上使用AI写作工具的事先批准。在任何一种情况下,都应谨慎使用AI写作工具,因为应适当地使用AI的使用。未经我允许或授权使用AI写作工具,或者即使在允许的情况下也无法正确引用AI,构成了违反UT Austin关于学术完整性的机构规则的违反。●…适用于AI产生的内容,允许使用它们的学生。如果您考虑使用AI写作工具,但不确定是否允许或适当地使用它们的程度,请询问。”
抽象可解释的人工智能(XAI)在实现明智决定的过程中发挥了作用。现代各种供应链(SC)平台的出现改变了SC相互作用的性质,导致了显着的不确定性。这项研究旨在对现有的有关决策支持系统(DSS)的文献进行彻底分析,并在SC领域内对XAI功能的结合。我们的分析揭示了XAI对SC领域决策过程的影响。本研究利用Shapley添加说明(SHAP)技术使用Python机器学习(ML)过程分析在线数据。解释性算法是专门为通过为其产生的预测提供理由来提高ML模型的清醒性的。本研究旨在建立可衡量的标准,以识别XAI和DSS的组成部分,从而在SC的背景下增强决策。这项研究评估了对他们做出预测的能力,在线数据集的利用,所检查的变量数量,学习能力的发展以及在决策背景下进行验证的研究,强调了需要在不确定条件下涉及智能决策的其他探索领域的研究领域。
为了优化激光诱导的石墨烯(LIG)JANUS膜,本研究研究了膜孔结构,聚二甲基硅氧烷(PDMS)涂层序列以及银(AG)纳米颗粒对膜蒸馏(MD)性能的影响。这项研究旨在增强石墨烯的光热特性,同时使用固有的电导率进行同时照相和电热MD。在相同的照片和电热功率输入中操作,lig janus membrane用较小的毛孔(即闪亮的一面)处理膜面部的膜膜,可改善53.6%的透气性能,并降低特定能量的特定能量35.4%,而与膜相比,用较大的毛孔(i.e.e.e.e.e.e.e.e.e.e)来治疗膜面孔。PDMS涂层序列的效果也取决于孔结构。对于具有较小孔结构的面部,激光照射前的涂层PDM(PDMS-BLSS)与激光照射后的涂层PDMS相比,与涂层PDMS相比,磁通量的提高高达24.5%,特异性能量降低了19.7%(PDMS-ALS)。至于孔结构较大的面部,激光照射前的涂层PDM(PDMS-BLDS)导致与辐照后涂层PDMS相比,与涂层PDMS相比,通量降低高达20.8%,比能量增加了27.1%(PDMS-ALDS)。带有Ag纳米颗粒的LIG JANUS膜导致光热特性提高,将通量提高43.1 - 65.8%,并使特定能量降低15.2 - 30.5%,同时维持相似的电热热特性。进行同时进行照相和电热量MD表明,只有Ag掺杂的Janus Lig膜产生协同作用,从而使组合加热模式的通量高于在单个加热模式下运行时获得的通量的求和。
van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
随着机器学习方法越来越多地用于增强人类决策能力,可解释人工智能 (XAI) 研究探索了将系统行为传达给人类的方法。然而,这些方法往往无法解释人类在与解释互动时的情感反应。面部情感分析研究人类面部的情绪表达,是了解用户如何参与解释的一个有前途的视角。因此,在这项工作中,我们的目标是 (1) 确定人们与 XAI 界面交互时哪些面部情感特征会很明显,以及 (2) 开发一个多任务特征嵌入,将面部情感信号与参与者对解释的使用联系起来。我们的分析和结果表明,当参与者未能有效地使用解释时,面部 AU1 和 AU4 以及唤醒的发生和值会增加。这表明面部情感分析应该纳入 XAI,以根据个人的互动风格个性化解释,并根据执行任务的难度调整解释。
第二,我们讨论法律,技术和行为因素如何提供有关在哪种背景下使用我们的法律-XAI分类法的解释的指导。以信用评分为例,我们演示了法律如何规定可以将哪种类型的解释方法用于特定算法决策系统。我们展示了法律,计算机科学和行为原则的结合如何指导决策者,法律学者和计算机科学家为特定法律领域选择正确的解释方法。第三,我们证明了如何将我们的法律-XAI分类法应用于包括医疗补助,高等教育和自动决策在内的各个领域。我们认为,在创建解释权时,决策者应该更具体。自动化的决定通常可以用大量的解释方法来解释,决策者应指定哪些解释应必须提高决策者的政策目标。我们的法律-XAI分类法可以帮助决策者根据其政策目标确定正确的解释方法。
摘要 自我调节学习 (SRL) 是一种认知能力,在促进学生有效制定策略、监控和评估自己的学习行为方面具有明显意义。研究表明,缺乏自我调节学习技能会对学生的学业成绩产生负面影响。有效的数据驱动反馈和行动建议被认为对 SRL 至关重要,并显著影响学生的学习和表现。然而,向每个学生提供个性化反馈的任务对教师来说是一个重大挑战。此外,由于大多数课程的学生人数众多,为个性化建议确定适当的学习活动和资源的任务对教师来说也是一个重大挑战。为了应对这些挑战,一些研究已经探讨了基于学习分析的仪表板如何支持学生的自我调节。这些仪表板提供了一些关于学生成功和失败的可视化(作为反馈)。然而,虽然这种反馈可能有益,但它并没有提供有见地的信息或可行的建议来帮助学生提高学业水平。可解释的人工智能 (xAI) 方法已被提出来解释此类反馈并从预测模型中产生见解,重点关注学生在正在进行的课程中需要采取的相关行动以改进。此类智能活动可以作为数据驱动的行为改变建议提供给学生。本论文提供了一种基于 xAI 的方法,可以预测课程表现并计算信息反馈和可操作的建议,以促进学生的自我调节。与以前的研究不同,本论文将预测方法与 xAI 方法相结合,以分析和操纵学生的学习轨迹。目的是通过为该方法提供的预测提供深入的见解和解释,为学生提供详细的、数据驱动的可操作反馈。与单独的预测相比,该技术为学生提供了更实用和有用的知识。所提出的方法以仪表板的形式实施,以支持大学课程中学生的自我调节,并对其进行了评估以确定其对学生学业成绩的影响。结果表明,仪表板显着提高了学生的学习成绩并提高了他们的自我调节学习技能。此外,研究发现,所提出的方法提出的建议对学生的表现产生了积极影响,并帮助他们进行自我调节。