摘要:这项研究着眼于与信用卡盗窃有关的严重问题,并评估机器学习方法如何检测并停止它。更复杂的欺诈是由于互联网交易的增加而造成的,危害了消费者和金融机构。信用卡日益增长的使用需要快速开发有效的欺诈检测系统,这些系统可以识别并停止欺诈性交易。这项研究着眼于一系列机器学习方法,从更常规的决策树或逻辑回归到更复杂的方法,例如支持向量算法,具有人工智能的神经网络,随机生成的森林和混合模型。我们分析了每种方法的优点和缺点,重点是其召回,准确性,精度和能力,以使用不平衡的数据集管理情况。可以通过将混合方法与合奏学习技术相结合,可以提高检测率并降低假阳性。合成的少数群体过度采样技术(SMOTE)提高了训练机学习模型的可靠性,并成功解决了类不平衡。这项研究强调了实时分析数据并采用最先进的技术(例如大数据分析和深度培训),以跟上新的欺诈策略是多么重要。行业 - academia的合作以及该部门正在进行的研发对于成功部署欺诈检测技术至关重要。这项研究强调了对最先进的机器学习方法的紧迫需求,以防止信用卡盗窃。通过增强金融机构识别欺诈的能力,这些技术发展将保护和维护消费者对在线交易的信任。改善了研究结论的目标,改善了所有利益相关者的欺诈检测系统和更安全的经济环境。
*: Correspondence: Dr. Ganesh B Chand (Email: gchand@wustl.edu ) and Dr. Hui-Yuan Miao (Email: miaoh@wustl.edu ) Credit authorship contribution statement YN: Conceptualization, Methodology, Software, Formal analysis, Visualization, Data curation, Writing – original draft, Writing - review & editing; TM:方法,软件,正式分析,写作 - 审核和编辑; HYM:方法,写作 - 原始草稿,写作 - 评论和编辑; PB:方法,软件,写作 - 原始草稿,写作 - 评论和编辑; DST:概念化,数据策划,写作 - 原始草稿,写作 - 评论和编辑; GBC:概念化,方法,软件,正式分析,可视化,数据策划,写作 - 原始草稿,写作 - 评论和编辑;监督,资金收购资金GBC得到了圣路易斯华盛顿大学的Mallinckrodt放射学研究所以及美国国立卫生研究院K01AG083230的支持。利益冲突作者没有利益冲突来宣布
允许将本工作的全部或一部分供个人或课堂使用的数字或硬副本授予,而没有费用,只要副本不是盈利或商业优势,并且副本带有此通知和首页上的完整引用。必须尊重他人所拥有的这项作品的组成部分的版权。允许用信用摘要。否则复制或重新出版以在服务器上发布或重新分配到列表,需要事先特定的许可和/或费用。请求权限从permissions@acm.org。
说明可解释性方法分析任何机器学习模型的行为和预测。实施的方法是:Fisher等人描述的特征重要性。(2018),累积的局部效应图,由Apley(2018),弗里德曼(Friedman(2001) (2013),Ribeiro等人描述的本地模型(“石灰”的变体)。 al(2016),STRUMBELJ ET所描述的Shapley值。 al(2014),Friedman等人描述的特征交互。 al 和树替代模型。(2013),Ribeiro等人描述的本地模型(“石灰”的变体)。al(2016),STRUMBELJ ET所描述的Shapley值。al(2014),Friedman等人描述的特征交互。al 和树替代模型。
为了说明与温室气体排放水平相关的未来预测中的不确定性,大多数气候模型都使用不同的强迫场景(例如共享的社会经济途径(SSP))运行。尽管可以将现实世界中温室气体浓度与这些假设的情况进行比较,但尚不清楚如何确定观察到的天气和气候异常是否与各个场景保持一致,尤其是在年际时间表上。因此,本研究使用人工神经网络(ANN)设计了一种数据驱动的方法,该方法通过使用高分辨率的单个模型初始条件大型合奏来通过匹配的排放场景来对年度平均温度或降水进行分类。在这里,我们构建了我们的ANN框架,以考虑气候图是来自SSP1-1.9,SSP2-4.5,SSP5-8.5,历史强迫场景,还是使用NOAA地球物理学动力学动态实验室的预测和地球系统研究(Spear)的无缝预测系统研究(Spear)的自然强迫场景。然后应用来自可解释的AI的局部归因技术来确定每个ANN预测使用的最相关的温度和降水模式。解释性结果表明,区分每个气候情况的一些最重要的地理区域包括北大西洋亚洲,中非和东亚的异常。最后,我们评估了从2031或2040年开始的两个过冲模拟的数据,这些模拟是一组未来的模拟,这些模拟被排除在ANN训练过程中。对于从十年前开始的快速缓解实验,我们发现ANN将其气候图与21 Century(SSP1-1.9)的最低发射情况联系起来,而与更中等的情况(SSP2-4.5)相比,它将在后来的缓解实验中选择。总体而言,该框架表明,可解释的机器学习可以提供一种可能通过未来气候变化途径评估观察结果的可能策略。
摘要 - CB2受体配体活性的准确预测是针对该受体的药物发现的关键,这与炎症,疼痛管理和神经退行性疾病有关。尽管传统的机器学习和深度学习技术已经显示出希望,但其有限的解释性仍然是理性药物设计的重要障碍。在这项工作中,我们介绍了CB2Former,该框架将图形卷积网络(GCN)与变压器体系结构相结合以预测CB2受体配体活动。通过利用变压器的自我发项机制以及GCN的结构学习能力,CB2Former不仅增强了预测性能,而且还提供了对受体活性基础分子特征的见解。我们针对各种基线模型进行基准测试,包括随机森林,支持矢量机,最近的邻居,梯度增强,极端梯度增强,多层感知器,卷积神经网络和重复的神经网络,并以0.685的0.685和0.685和0.67的0.67和0.67 and and and and and and and and and and and and and and and and 0.675,并表现出优势。此外,注意力重量分析揭示了影响CB2受体活动的关键分子子结构,强调了该模型作为可解释的AI的潜力。这种指出关键分子基序的能力可以简化虚拟筛选,指导铅优化和加快治疗性发育。总的来说,我们的结果展示了先进的AI方法(例如CB2Former)在提供准确的预测和可操作的分子见解方面的变革潜力,从而促进了药物发现中的跨学科合作和创新。
机器学习技术越来越多地用于高风险决策,例如大学录取,贷款归因或累犯预测。因此,至关重要的是,确保人类用户可以审核或理解所学的模型,不要创建或再现歧视或偏见,并且不会泄露有关其培训数据的敏感信息。的确,可解释性,公平性和隐私是负责任的机器学习开发的关键要求,在过去的十年中,这三者进行了广泛的研究。但是,它们主要被孤立地考虑,而在实践中,它们相互相互作用,无论是积极还是负面的。在本次调查文件中,我们回顾了有关这三个Desiderata之间相互作用的文献。更确切地说,对于每种成对相互作用,我们总结了认同的协同作用和紧张局势。这些发现突出了几种基本的理论和经验性冲突,同时还指出,当一个人旨在保留高水平时,共同考虑这些不同的要求是具有挑战性的。为了解决这个问题,我们还讨论了可能的调解机制,表明仔细的设计可以成功处理实践中这些不同的问题。
。cc-by-nc-nd 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过PEER REVIVE的认证)Preprint preprint the本版本持有人于2025年2月15日发布。 https://doi.org/10.1101/2024.11.25.24317880 doi:medrxiv preprint
在医疗保健等领域,AI有助于医学诊断,药物发现和个性化治疗建议[2]。同样,在金融市场中,AI驱动算法有助于高频交易,风险评估和欺诈检测[3]。在自动驾驶汽车和机器人技术中的AI部署增强了导航,对象识别和实时决策能力[4]。然而,尽管AI在决策中的潜力是巨大的,但与模型可解释性,可信度和道德考虑有关的挑战仍然存在[5]。一个主要问题是依赖黑盒深度学习模型,尽管它们令人印象深刻,但他们的决策过程缺乏透明度[6]。这种不透明度导致人们对AI应用程序中的公平性,问责制和法规合规性的关注日益加剧[7]。
机器学习方法在科学过程中可能是有价值的帮助,但是他们需要面对来自非均匀实验条件的数据的具有挑战性的环境。最近,元学习方法在多任务学习方面取得了重大进展,但它们依靠黑盒神经网络,占据高计算成本和有限的解释性。利用学习问题的结构,我们认为可以使用更简单的学习模型,并具有以学习任务为例,可以使用更简单的学习模型来实现多环境的概括。至关重要的是,我们证明该体系结构可以识别系统的物理参数,从而实现可解释的学习。我们通过将其与物理系统上的最新算法进行比较,降低了我们方法的竞争性概括性能和低计算成本,从玩具模型到复杂的,非分析系统。我们的方法的解释性用原始应用在物理参数诱导的适应性和自适应控制中进行了说明。