Bio/Ecoresbable Electronic Systems在可植入的医疗设备中创造了独特的机会,这些设备在有限的时间内满足需求,然后自然消失以消除对提取手术的需求。这类技术开发的一个关键挑战是,材料可以用作周围水或生物流体的薄壁垒,但最终完全溶于良性最终产品。本文描述了一类无机材料(硅硝酸盐,sion),可以通过血浆增强化学蒸气沉积在薄膜中形成。体外研究表明,sion及其溶解产物具有生物相容性,表明其在植入式设备中的使用潜力。一个简便的过程,用于制造薄弱的多层薄膜,绕过与无机薄膜的机械脆性相关的限制。系统的计算,分析和实验研究突出了基本材料方面。在体外和体内发出无线发光二极管中的演示说明了这些材料策略的实际使用。通过对化学成分和厚度的精细调整,可以选择降解速率和水渗透性的能力为获得一系列功能寿命以满足不同的应用程序要求。
虽然直接细胞移植在治疗许多使人衰弱的疾病方面具有巨大的希望,但注射后细胞存活不良和植入的临床翻译有限。尽管可以保护膜破坏膜的扩展流量并提供体内支持性的3D环境,从而改善了细胞保留和治疗成本,但大多数是由合成或自然收获的聚合物产生的,这些环境是免疫原性和/或化学无限的。This work presents a shear-thinning and self-healing telechelic recombinant protein-based hydrogel designed around XTEN – a well-expressible, non-immunogenic, and intrinsically disordered polypeptide previously evolved as a genetically encoded alternative to PEGylation to “eXTENd” the in vivo half-life of fused protein therapeutics.与源自软骨寡聚基质蛋白衍生的自缔合线圈结构域进行,形成了单个成分的物理交联的水凝胶,表现出快速剪切稀疏和通过同质体系盘旋螺旋衬包的自我修复。 可变稳定线圈关联的个体和组合点突变,可以简单地对遗传编程材料进行粘弹性和生物降解性。 最后,这些材料可以通过培养,注射和经胸中植入小鼠中的培养基源性肾(HEK)和胚胎干细胞衍生的心肌细胞(HESC-CMS)保护和维持可行性。 这些基于XTEN的注射水凝胶对体外细胞培养和体内细胞移植应用都显示出希望。,形成了单个成分的物理交联的水凝胶,表现出快速剪切稀疏和通过同质体系盘旋螺旋衬包的自我修复。可变稳定线圈关联的个体和组合点突变,可以简单地对遗传编程材料进行粘弹性和生物降解性。最后,这些材料可以通过培养,注射和经胸中植入小鼠中的培养基源性肾(HEK)和胚胎干细胞衍生的心肌细胞(HESC-CMS)保护和维持可行性。这些基于XTEN的注射水凝胶对体外细胞培养和体内细胞移植应用都显示出希望。
纳米材料和生物结构的消化杂志卷。19,编号1,1月至2024年3月,第1页。 283 - 293石墨烯加载的波导的可调特性,被磁性材料包围,razzaz a*,A。Nawaz B,A。Ghaffar B A A. Ghaffar B A电气工程系,萨特姆·阿卜杜拉西兹王子工程学院,Al-kharj,Al-kharj 16278,萨特阿拉巴在平面铁素铁烯 - 磷酸铁岩波导结构上的传播电磁表面波(EMSW)。针对工作频率的归一化相和衰减阶段常数分析了特征曲线。在标准化相位和衰减阶段常数上观察到了铁素和石墨烯的不同参数的影响。响应这些参数,结构化的波导表现出了电磁表面波的方便传播,而Terahertz频率区域中的传播损失最小。拟议的波导可用地位在纳米光器设备,Terahertz过滤器,高度集成的Terahertz设备和通信系统中。(2023年10月13日收到; 2024年2月9日接受)关键字:表面波,等离子体,石墨烯,波导1。引言电磁表面波(EMSW)由于其在成像中的潜在应用以及甚至人类生命的各个方面而引起了当前纳米光场领域的广泛关注。这些EMSW在两个不同的介质的界面上激发了激发,并且随着其从接口移动而呈指数下降[1]。表面等离子体极性子(SPP)是在金属和介电之间传播的特殊EMSW。SPP由于研究人员的一些非凡电磁性状而增加了对研究人员的好奇心[2,3]。由于衍射极限,传统的光子设备在缩小尺寸至纳米范围内遇到困难。表面等离子体极性克服了该问题,使其适合将来的光子设备[4]。此外,SPP还提供了根据所需的应用在纳米范围内控制和操纵光分散和传播的潜在方法。当前基于金属的等离子体设备在社会中使用。金属在THZ频带上显示传播损失。为了克服该问题石墨烯材料。石墨烯是一个原子厚的平坦碳原子,包含结晶六边形结构。由于其独特的光学特性,例如较大的光学吸收,相对高的非线性和自偏效应,它引起了光子,电子,磁性,热和机械性能的极大关注[5-8]。与其他材料,较大的表面积,零带结构和高机械强度相比,单一石墨烯层具有较大的导热率。最近的文献工作表明,通过化学掺杂或偏置,石墨烯可以在中红外区域表现出金属性能[9]。石墨烯等离子体具有比最小传播损失的金属更强的限制。石墨烯可以在Terahertz(THZ)频率下维持高度狭窄的表面等离子体,从而实现了以深波长尺度引导THZ波的不同策略。石墨烯的特性可以通过改变其掺杂水平和外部栅极电压来调整更高频率[10]。铁氧体是各向异性材料的磁场强度最低的任何永久磁性材料的磁场强度较大,较大的能量产物范围为0.8至5.3 MOE。他们即使在较高的温度下也保持其性能,并以最小的能量损失表现出最佳性能。
扭曲的双层石墨烯显示出许多引人入胜的特性,可以通过改变其层之间的扭曲角来调节。的确,电子平面波段和相应的强电子定位是在魔法角度附近获得的(〜1.1°),导致观察到几种强相关的电子现象[1]。随后,最近在其他多层(即两层)石墨烯系统中进行了扭曲效应,例如,请参见参考文献。[2]。除了与双层超晶格共有的共同特性外,由于存在大量层以及各种堆叠配置,因此扭曲的多层石墨烯系统还具有不同的性质。显着的特征包括超Heavy和超偏移主义的迪拉克·费米斯的共存和相互作用[3],局部偏置电子状态的共存[4],以及在很大程度上可以通过外部磁场[5] [5]。在本演讲中,我们将讨论通过原子计算证明的扭曲多层石墨烯的这些显着特性[6]。将强调垂直电场的影响(如图1所示)。根据其可调电子性能,还提供了相应的光谱(如图2所示)。
石墨烯,11本质上是一层石墨,具有巨大的电位,具有令人印象深刻的理论能力高达744 mA H G 1,因为它遵循了两侧的单层吸附机制,而不是在石墨中观察到的分期插入反应机制。12–14然而,单层之间的弱范德华相互作用可能会导致不良的聚集,从而导致快速的性能降解和损害循环稳定性。为了减轻重新打击问题,Holey石墨烯及其衍生物已成为有前途的解决方案,引入了具有多种用途的多孔结构。15,16首先,它有效地减少了邻居层之间的弱相互作用,从而防止了团聚和维持结构完整性,还提供了额外的跨平面离子传输通道,从而促进了快速充电/放电过程。17–20,其次,特定的多孔框架可以在锂离子插入/提取过程中适应局部体积变化,从而增强循环。21在开发基于石墨烯的阳极材料的液体材料方面取得了巨大进展。2016年,Alsharaeh等。通过利用涉及Ag纳米颗粒的蚀刻方法,成功合成了孔减少石墨烯(HRGO)。此方法产生了具有特定多孔结构的HRGO,其孔的范围为2 nm至5 nm。所得材料表现出显着的容量,达到了减少石墨烯的2.5倍,并在100次充电/放电周期后表现出令人印象深刻的94.6%可逆能力。22进一步改善骑行
我们确定了生化测定中A-005结合对TYK2调节(JH2)和激酶(JH1)域的亲和力。在商业激酶面板中评估了化合物的效力和选择性。在人外周血单核细胞(PBMC),全血和小胶质细胞中评估了该化合物对免疫细胞活性的影响。脑脊液(CSF)暴露,并在大鼠中进行微透析,以评估化合物越过血脑屏障的潜力。最后,我们评估了该化合物对小鼠EAE临床体征的影响。› A-005是一种高度有效的变构小分子TYK2抑制剂,预计将在2024年初进行人类临床试验。› A-005抑制人类全血,PBMC和小胶质细胞的TYK2途径激活。›大鼠的一项微透析研究显示了A-005越过血脑屏障的能力。› A-005在预防或治疗时降低EAE临床评分。› PH1临床试验中的剂量水平预计将在中枢神经系统和外围实现完全靶标的抑制作用。
Yemi Osayame 1、Franklin Kostas 1、Mitchell Kopacz 1、Mackenzie Parmenter 1、Christopher B. Rohde 1、Matthew Angel 1
手性分子的准确检测,分类和分离是推进药物和生物分子创新的关键。设计的手性光提出了一种有希望的途径,以增强光与物质之间的相互作用,从而提供一种无创,高分辨率和具有成本效益的方法来区分对映异构体。在这里,我们提出了一个基于ACHIRAL等离子体系统的纳米结构平台,用于表面增强红外吸收吸收诱导的Vi-Brational圆形二色性(VCD)。该平台可以对对映体混合物的精确度量,分化和量化,包括浓度和对映体的多余确定。与常规的VCD光谱技术相比,我们的手性对映异构体的检测灵敏度高13个数量级的检测敏感性,这是相应的路径长度和浓度。该刺激性等离子体系统的可调光谱特性促进了多种手性化合物的检测。平台的简单性,可调节性和出色的灵敏度具有在药物设计,药物和生物应用中分类的巨大潜力。
该项目首先采访了公用事业公司,了解了电网的痛点,以了解原型规格和测试参数。我们专注于两种类型的测试,慢速充电和放电速率可提高效率,快速充电和放电速率可提高峰值管理和负载灵活性。实验室测试设置已升级以提高可靠性和准确性,并开发了数据采集和控制软件来运行该系统。EPRI 安装了一组独立的传感器和数据采集设备,以远程测量和验证 THERMAplus 热存储模块的容量、功率和效率,用于存储热量和存储冷却。原型在公用事业采访中得出的用例下进行了测试。EPRI 和 MicroEra Power 都分析了数据并为本报告汇编了结果。
该项目始于采访有关网格疼痛点的实用程序,以告知原型规格和测试参数。我们专注于两种类型的测试,充电速度缓慢,效率和快速充电率和排放率,用于峰值管理和负载灵活性。实验室测试设置已升级以确保可靠性和准确性,并开发了数据采集和控制软件以运行系统。epri安装了一组独立的传感器和数据采集设备,以远程测量和验证用于存储热量和储存冷却的热Plaplus热存储模块的容量,功率和效率。原型在实用程序访谈中得出的用例中进行了测试。EPRI和Microera Power分析了该报告的数据并编译结果。