带有光波导的分子发光材料在发光二极管,传感器和逻辑门中具有广泛的应用前景。但是,大多数传统的光学波导系统都是基于脆性分子晶体,该晶体限制了在不同的应用情况下的柔性设备的制造,运输,存储和适应。迄今为止,在同一固态系统中具有较高柔韧性,新型光学波导和多端口色调发射的光功能材料的设计和合成仍然是一个开放的挑战。在这里,我们已经构建了新型的零维有机金属卤化物(Au-4-二甲基氨基吡啶[DMAP]和DMAP),对于光学波导而言,弹性很小,损失系数很少。对分子间相互作用的理论计算表明,2分子晶体材料的高弹性是原始的,它是从其人字形结构和滑移平面的。基于2个晶体的一维柔性微脚架和Mn-Dmap的2维微板,具有多色和空间分辨光学波导的异质界面。杂合的形成机理是基于表面选择性生长,因为接触晶体平面之间的低晶格不匹配比。因此,这项工作描述了具有高灵活性和光学波导的基于金属壁的晶体异质结的首次尝试,从而扩展了用于智能光学设备(例如逻辑门和多路复用器)的传统发光材料的前景。
在本文中,我们研究了小扭曲角度的TBG的光学传导率和热辐射。我们使用包括200多个平面波的连续模型来实现收敛能带。此方法对很小的角度有效。具有不同扭曲角度的TBG的光导率在数值上由久保公式计算出来。基于先前作品的远场辐射理论[21-23],我们探索了TBG的热辐射特性。TBG的辐射光谱通过改变扭曲角度显示可调的高强度和峰位置。 具有魔法角度,可以调节TBG辐射以在0.05EV至0.08EV范围内集中,这超出了大气透明窗口[24]。 这种电磁(EM)波很难在大气中传播,因此红外(IR)摄像机无法检测到它。 用这种材料制成或覆盖的设备是不可见的。 此类材料也可用于制造纺织品以保持温暖,因为热辐射不太可能通过大气传播。 我们的结果建立了魔法双层石墨烯,作为一个高度可调的平台,可调查隐形和保留温暖的材料。TBG的辐射光谱通过改变扭曲角度显示可调的高强度和峰位置。具有魔法角度,可以调节TBG辐射以在0.05EV至0.08EV范围内集中,这超出了大气透明窗口[24]。这种电磁(EM)波很难在大气中传播,因此红外(IR)摄像机无法检测到它。用这种材料制成或覆盖的设备是不可见的。此类材料也可用于制造纺织品以保持温暖,因为热辐射不太可能通过大气传播。我们的结果建立了魔法双层石墨烯,作为一个高度可调的平台,可调查隐形和保留温暖的材料。
二维材料由于其超薄的厚度和超高的表面积与体积比而拥有奇特的物理和化学特性。单层过渡金属二硫化物 (TMDCs) 半导体表现出可调的光致发光 (PL),可以通过应变和掺杂等外部扰动来操纵。例如,单层 MoS 2 拥有应变可调的能带结构,表现出可用于光伏 [1] 的宽带光吸收和可用于量子信息 [2] 应用的有前途的单光子发射。单层 MoS 2 还表现出由化学 [3] 或静电掺杂 [4] 引起的接近 1 的 PL 量子产率,从而可以开发高效的发光二极管 [5] 或激光器 [6]。为了探测外部扰动,拉曼光谱是一种强大且非破坏性的工具,可以定量确定应变和掺杂对 MoS 2 的影响。尽管应变和掺杂对
摘要:最近,光学动物的天空,具有复杂矢量结构的拓扑准粒子在光线下引起了越来越多的兴趣。在这里,我们通过理论和实验性地提出了这些普遍的家族,即可调的光泽度,揭示了一种新的机制,可以通过简单的参数调整来转换各种Skyrmionic拓扑之间,包括Néel-,Bloch-,Bloch-和anti-Kyrmion类型。此外,还提出了一种几何Skyrme-Poincaré表示,以可视化可调的天空的完整拓扑演化,我们称之为Skyrmion torus。为了通过实验生成可调节的光学空间,我们基于空间光调节器实现了数字全息图系统,结果与我们的理论预测表现出了很大的一致性。
Yemi Osayame 1、Franklin Kostas 1、Mitchell Kopacz 1、Mackenzie Parmenter 1、Christopher B. Rohde 1、Matthew Angel 1
Eli Beblines设施的Alfa(加速度的Allegra激光)是由KHz L1-Allegra激光器驱动的激光等离子体电子加速器。ALFA可用的光学设置使用户能够以相对论强度(〜5x10 18 w/cm 2)进行激光互动实验,此外,还以可调的频率(最高1 kHz)以及可调的能量(最大可乐(最大值)50 meV)提供超短电子束(几乎是FS)。在ALFA上已经证明了这种独特的能力,以优化KHz激光Wakefield等离子体加速度,以提供超相对性(<50 MEV),超短效率(几个FS)电子束本质上与其他激光脉冲。这些独特的特征可以应用于非常高的能量电子(VHEE)放射疗法和剂量测定法,X射线散射和BETATRON辐射,超快速放射性生物学和放射化学以及辐射对电子学研究的效果。
“ Pai-Graphene:一种新的拓扑半学二维碳同质量,具有高度可调的各向异性狄拉克锥”。Chen X,Bouhon A,Li L,Peeters FM,Sanyal B,Carbon 170,477(2020)。http://doi.org/10.1016/j.carbon.2020.08.012