改进成像质量有可能可视化以前看不见的大脑构建基块,因此是神经科学的巨大挑战之一。近年来,新的组织清除技术的快速开发试图解决厚脑样品中的成像折衷,尤其是对于高分辨率光学显微镜,清除介质需要与客观沉浸式介质的高折射率相匹配。这些问题在昆虫组织中加剧了,其中许多(最初充满了空气的)气管管在整个大脑中分支在整个大脑中分支会增加光的散射。迄今为止,很少有研究系统地从系统地量化了使用客观透明度和组织收缩测量值的清除方法的好处。In this study we compare a traditional and widely used insect clearing medium, methyl salicylate combined with permanent mounting in Permount (“MS/P”) with several more recently applied clearing media that offer tunable refractive index ( n ): 2,2 ′ -thiodiethanol (TDE), “SeeDB2” (in variants SeeDB2S and SeeDB2G matched to oil and glycerol immersion, n分别= 1.52和1.47)和Rapiclear(也有n = 1.52和1.47)。,我们通过将新鲜解剖的大脑与二翼型链的清除大脑进行比较,在有或不添加真空或乙醇预处理(脱水和再含水)中,以撤离气管系统的空气,测量了透明度和组织收缩。结果表明,乙醇预处理对于提高透明度非常有效,无论随后的清除介质如何,而真空处理几乎没有可测量的好处。乙醇预处理的Seedb2g和Rapiclear大脑的收缩率要比使用传统的MS/P方法少得多。此外,在较低的折射率下,与TDE和MS/p相比,这些最近开发的媒体更接近甘油浸入的指数,具有出色的透明度。繁琐的速度较小,但两者都提供了足够的透明度和折射率可调节性,可允许大型昆虫的全山大脑中局部体积的超分辨率成像,甚至是光片显微镜。尽管雷管储存的样品的长期永久性仍有待确定,但在室温下,我们的样品仍显示出良好的储存后荧光保存超过一年。
自2005年发现石墨烯以来,相互作用的2D电子系统中特殊地面的形成引起了人们的关注[1]。除了磁有序外,还报告了有关最近实验中的电荷顺序和与Mott阶段配对的报道[2-4]。在WSE 2 /WS 2层[5,6]和α -rucl 3 [3,4]中的最新实验中,我们分析了在双层激子中存在莫特相的条件,并且在量子和热波动方面的稳定性及其稳定性。氯化氯化物α-相(α -rucl 3)是一种具有强旋轨耦合的分层化合物,以其有趣的电子特性而闻名,尤其是其在量子材料中的潜在使用和自旋液体相[7-12]。其电子结构受RU 4 d轨道和晶体场效应的影响。α相具有强旋轨耦合的特征,该耦合表现出多轨蜂窝状莫特绝缘阶段[3,7,13-19]。对于相关电子系统的研究,此阶段特别有趣。已经对α -rucl 3的蜂窝晶格的电子结构的作用进行了广泛研究,使用光发光表格[14],拉曼散射[20-22],光发射光谱[23],THZ光谱[24,25],x-雷雷镜[26] intrastry sptription [26] intrastry Sptiptrys [26] [27]。尽管Mott Gap的大小正在争论中,但在实验研究中已经证明了Mott绝缘子在α -RUCL 3中的存在[13,17,21,23]。Qiu等。 参考文献中报告。 1。Qiu等。参考文献中报告。1。调查Mott绝缘子的核心任务之一应解决带电颗粒分布的刚度。这在很大程度上取决于间隙的大小相对于跳跃速率以及材料的化学掺杂。通过化学掺杂Mott绝缘子来调整材料特性是非常具有挑战性的。具有示例性莫特绝缘子的有前途的候选者是α -rucl 3,顶层的石墨烯是α -rucl 3。而α -rucl 3带有孔,而额外的石墨烯片充当电子储层。[3]如何量身定制由石墨烯和α -rucl 3组成的范德华异构结构等电子结构。该材料的示意图如图然后,石墨烯层的电子和α -rucl 3层中的孔会受到有吸引力的层间相互作用,从而导致激子的形成[28]。在此设置中,激子的密度通过电子的密度控制,后者通过连接到石墨烯片的电栅极调节[3]。栅极电压诱导激子气体的有效化学电位µ。与化学掺杂相反,来自石墨烯的掺杂提供了连续的可调节性,并且不会引入不希望的晶格失真。分别对电子和孔的内部排斥可以产生电荷密度波或广义的Wigner晶体[29]。电荷顺序也可能是由电子 - 波相互作用引起的[30]。基于自一致的Hartree-fock或连贯的电位近似[31]的最新计算表明,如果对材料的特定细节计算自我能量,则复杂的自我能量可以描述实验结果的合理近似来描述实验结果。不参考特定的显微镜机制,这是对双重